Comparative study between manual vacuum aspiration and dilatation and curettage in the surgical management of early incomplete abortion in RMMCH, Tamilnadu: A randomized controlled trial

Dr. Jayashree V, Dr. Latha K, Dr. Mahalakshmi S

Abstract
The aim of this study is to compare manual vacuum aspiration and dilatation and curettage in the surgical management of early weeks incomplete abortion in terms of efficiency of complete removal of the partially expelled products of conception, incidence and frequency of procedure induced complications, duration of procedure and duration of hospital stay.

Methods: A Randomized controlled trial carried out at Department of Obstetrics and Gynaecology, RMMCH, over a period of 18 months from (January 2017 – June 2018) after getting the approval of Ethical committee. Antenatal women of <12 weeks gestation with history of incomplete abortion were taken for the study and were randomly separated into two groups. Women in group A underwent Manual vacuum aspiration and women in group B underwent dilatation and curettage after getting informed and written consent regarding the purpose of the study and details of the procedure. The diagnosis of incomplete abortion was based on history, clinical examination and sonographic findings at the time of admission. In the present work, safety and efficacy, rate of occurrence of complications, duration of procedures, duration of hospital stay, requirement of repeat procedure and anaesthesia / uterotonics / blood transfusion were compared between the two groups. A total of 160 patients were enrolled with 80 in each group. The entire statistical procedure was carried out using statical packages of Social Sciences (spcs-21).

Results: Manual vacuum aspiration is a more effective and rapid office procedure and was associated with less blood loss, shorter duration of hospitalization when compared to dilatation and curettage. There were no cases of uterine perforation and cervical laceration in both groups.

Keywords: Manual vacuum aspiration (MVA), Dilatation and curettage (D&C), uterotonics

Introduction
Early pregnancy loss is the most common complication of human gestation, affecting 10-20% of clinically diagnosed pregnancies. Early pregnancy loss is defined comprehensively as “a disturbance in pregnancy occurring before the period of fetal viability resulting in expulsion or retention of pregnancy”. About 18% of zygotes do not implant, about 32% of implantation spontaneously abort near the onset of next expected menstrual cycle and are unrecognized called subclinical miscarriage; the remaining 15-20% are spontaneous miscarriages after clinical recognition of pregnancy. Majority 80% occur before 13 week of pregnancy out of which three fourth occur in the first two months of gestation. Spontaneous miscarryage is defined as expulsion of the products of conception before the period of viability, about 20-22 weeks of gestation (WHO definition). RCOG defines the period of viability as 24 weeks.

The classification of abortion includes

• Sporadic

Spontaneous Miscarriage Includes

• Threatened abortion- where the process of abortion has set in but has not reached the stage of irreversibility; h/o vaginal bleeding with closed cervix.

• Incomplete abortion-where part of the products of conception (fetus or placenta) has already got expelled and the remaining part are unable to be naturally expelled by the mother. h/o vaginal bleeding with passage of clots/products associated with cervical changes.

• Inevitable abortion-where the process of abortion is happening and has progressed to an irreversible stage.
• Complete abortion—entire conceptus has passed out through the cervical canal followed by cessation of pain and bleeding.
• Missed abortion or embryonic demise—where confirmed nonviable pregnancy by ultrasound without any bleeding; no cervical changes and the conceptus remain in the womb.

Induced miscarriage Includes
1. Legal/medical termination of pregnancy
2. Criminal

Recurrent / habitual miscarriage
The reliability of medical methods of incomplete abortion is uncertain and surgical methods are preferred to medical methods in first trimester abortions. The various surgical methods include dilatation and curettage, dilatation and evacuation (electrical vacuum aspiration) and manual vacuum aspiration. Manual vacuum aspiration is the ideal method of termination of pregnancy of <12 weeks. The Government of India has accepted the MVA method as safe when performed upto 12 weeks by qualified medical personnel; upto 8 weeks if performed by trained midwives and nurses in primary health centres. When compared to sharp curettage methods vacuum aspiration technique is quicker, easier, requires less time and early discharge from hospital, less blood loss and need for blood transfusion, decreased rate of complications like uterine injury, cervical laceration and no need for anaesthesia. There is no need for additional uterotonic as there is minimal blood loss. Being developed as an alternative to the routine dilatation and curettage MVA is now evolving as the best surgical method of evacuation in first trimester abortion.

Patients and methods

Study settings
The study was done in the Department of Obstetrics and Gynaecology, Rajah Muthiah Medical College and Hospital, Chidambaram from January 2017 - June 2018.

Study population
Antenatal women with <12 weeks of gestation and history of incomplete abortion regardless of the cause of abortion, gravidity and maternal age, without any pelvic pathology, patent cervix were included in the study. patients with >12 weeks of gestation, with hemodynamic instability (hypovolemia/ septic shock)/ profound thrombocytopenia/ bleeding disorders, presence of any gynaecological pathology (uterus/ pelvic/ ovarian pathologies/ sexually transmitted infections), septic abortion (fever, tachycardia, purulent vaginal discharge, abdominal distension) and molar pregnancy were excluded from the study group.

160 patients were assigned for the study and were randomly assigned into two groups A & B
Group A underwent Manual Vacuum Aspiration
Group B underwent Dilatation and Curettage
An informed and written consent was obtained from the patients after explaining the details of the method and merits and demerits of both the procedures and included in the study.

The diagnosis of incomplete abortion was confirmed from history (menstrual history, any medications taken/ predisposing factors, h/o passage of clots/ products of conception), clinical examination (bleeding through os, open internal cervical os) and obstetric sonogram (heterogenous/ echogenic material along the endometrial cavity and/or in the cervical canal)

Patients in group A – MVA was performed under paracervical block or with analgesics. In D&C group, patients required short general anaesthesia as pain was severe.

Outcomes Assessed
• Efficacy of the procedure (ultrasound revealed no evidence of retained products post procedure)
• Need for repeat evacuation
• Blood loss quantification and the need for blood transfusion
• Need for additional uterotonic (oxytocin, methergin, prostodin analogues) for arrest of bleeding
• Duration of procedure and hospital stay
• Chances for uterine perforation and cervical laceration

Statistical analysis
The entire statistical procedure was carried out using statistical package for social sciences – version 21. Duration of the procedure and hospital stay were compared between groups using independent sample ‘t’ test and chi-square test respectively. The complications such as excess blood loss, need for repeat procedure, use of additional uterotonic and blood transfusion requirement were compared between the two groups using frequency distribution and Chi-square test of association. The blood loss comparison is also done using independent sample ‘t’ test.

Data analysis and results
In the present work, efficacy and safety of MVA is compared with DNC in the management of early pregnancy failure. A total of 160 patients were enrolled and they were randomly divided in to either of two groups. Duration of procedure, hospital stay was compared between groups using independent sample ‘t’ test and chi-square test respectively. Complications such as excess blood loss, repeat procedure, use of uterotonic and blood transfusion requirement was compared between groups using frequency distribution and Chi-square test of association. Blood loss comparison is also done using independent sample ‘t’ test. The entire statistical procedure was carried out using statistical packages of social sciences. (SPCS-21)

Table 1: Age Distribution & Comparison

<table>
<thead>
<tr>
<th>Age (in years)</th>
<th>DNC</th>
<th>MVA</th>
<th>Chi-Square Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>18-22</td>
<td>25</td>
<td>31.3</td>
<td>26</td>
</tr>
<tr>
<td>23-28</td>
<td>49</td>
<td>61.3</td>
<td>43</td>
</tr>
<tr>
<td>29-33</td>
<td>5</td>
<td>6.3</td>
<td>9</td>
</tr>
<tr>
<td>>33</td>
<td>1</td>
<td>1.3</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>Mean</td>
<td>24.18</td>
<td>24.39</td>
<td>24.18</td>
</tr>
<tr>
<td>S.D</td>
<td>3.26</td>
<td>3.69</td>
<td></td>
</tr>
</tbody>
</table>
The common age group was 23 to 28 years where 61.3% in DNC and 53.8% in MVA were observed. The Chi-square test of independence is statistically significant. Hence the age of two groups are not differed significantly. The mean age of DNC was 24.18 ± 3.26 whereas it was 24.39 ± 3.69 for MVA.

Blood Loss Comparison

<table>
<thead>
<tr>
<th>Blood loss</th>
<th>DNC</th>
<th>MVA</th>
<th>DNC</th>
<th>MVA</th>
</tr>
</thead>
<tbody>
<tr>
<td><100</td>
<td>63</td>
<td>78.8</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>>100</td>
<td>17</td>
<td>21.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>100</td>
<td>80</td>
<td>100</td>
</tr>
</tbody>
</table>

Excess blood loss was higher (N=17, 21.3%) in DNC when compared to MVA, where no excess blood loss was reported. The mean blood loss in DNC was 74.31±25.12 whereas it was 33.75±9.19 in MVA. The difference is statistically significant (P<.05).

Comparison of procedure related characteristics of both groups

Table 3 (a): Distribution of Duration & Procedure

<table>
<thead>
<tr>
<th>Duration of Procedure (Min)</th>
<th>DNC</th>
<th>MVA</th>
<th>Chi-Square Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤5</td>
<td>10</td>
<td>12.5</td>
<td>34 42.5</td>
</tr>
<tr>
<td>6-10</td>
<td>62</td>
<td>77.5</td>
<td>46 37.5</td>
</tr>
<tr>
<td>11-15</td>
<td>8</td>
<td>10.0</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>100</td>
<td>80 100</td>
</tr>
</tbody>
</table>

Table 3(b): Comparison of Duration & Procedure

<table>
<thead>
<tr>
<th>Duration of Procedure (Min)</th>
<th>Mean</th>
<th>S.D</th>
<th>Independent Sample Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>'t' value</td>
</tr>
<tr>
<td>DNC</td>
<td>7.89</td>
<td>2.08</td>
<td>7.44</td>
</tr>
<tr>
<td>MAV</td>
<td>5.93</td>
<td>1.11</td>
<td></td>
</tr>
</tbody>
</table>

Table 3(c): Duration of hospital day

<table>
<thead>
<tr>
<th>Hospital Stay (Days)</th>
<th>DNC</th>
<th>MVA</th>
<th>Chi-Square Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>72</td>
<td>90</td>
<td>79</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>100</td>
<td>80</td>
</tr>
</tbody>
</table>
In MVA, 42.5% had lesser than or equal to 5 minutes of duration of procedure.
In DNC only 12.5% had lesser than or equal to 5 minutes of duration of procedure. In DNC, most of the patients had 6 to 10 minutes of procedure (N=62, 77.5%). Even 10% patient in DNC group had duration in excess of 10 minutes. The average duration of study procedure in DNC was 7.89±2.08 minutes whereas it was only 5.93+/-1.11 minutes in MAV. The difference is statistically significant.

Only one patient (1.2%) had two days of hospital stay when compared to 8 patients (10%) in D&C group. But the Chi-square difference is statistically insignificant.

The repeat procedure was comparatively higher in DNC (10%) than in MVA (2.5%). Uterine perforation was not observed in both the groups. Cervical laceration was again not observed in both the groups. Additional uterotonics was used in 17.5% (N=14) in DNC whereas it was not used in MVA. Blood transfusion was required in 3.8% (N=3) in DNC and not at all in MVA group.

The average duration of the study procedure in D&C was 7.89±2.08 minutes whereas it was only 5.93±1.11 minutes in MVA. The difference is statistically significant.

In both the groups, no cervical laceration was seen in either group in Yin, 2005, Suwan A, et al, 2009.[13]

Uterine perforation and cervical laceration were not found in both groups. Similar result was found in Forna F, Gulmezoglu AM where uterine perforation was not seen in both the study groups. No cervical laceration was seen in either group in Yin, 2005, Suwan A et al, 2009.[13]

The need for additional uterotonics was seen in 17.5% of cases of D&C group, whereas additional uterotonics were not required in the MVA group.[14]

The mean age of D&C was 24.18±3.26 versus MVA was 24.39±3.69. The difference is statistically insignificant.[10, 13]

Excess blood loss was higher in D&C group (21.3%). No excess blood loss was found in MVA group. The mean blood loss was 74.31±25.12 in D&C versus only 33.75±9.19 in MVA. The difference was statistically significant. Comparable to Elie NK wabong, Joseph Nelson Fomulu, 2015.[1-3]

In this study MVA was done entirely under para-cervical block. But D&C group, 80% cases required short general anaesthesia/TIVA (total Intravenous analgesia). Only 20% cases were done under para-cervical block. Miligos 2009 where the study result establishes that MVA can be done without anaesthesia.[8]

