International Journal of Clinical Obstetrics and Gynaecology

ISSN (P): 2522-6614 ISSN (E): 2522-6622 © Gynaecology Journal www.gynaecologyjournal.com

2022; 6(6): 04-06 Received: 04-08-2022 Accepted: 09-09-2022

Dr. V Sai Navya

Post Graduate, Department of Obstetrics and Gynaecology, Sri Venkateshwara Medical College, NTRUHS, Tirupati, Andhra Pradesh, India

Dr. KV Padmaja

Assistant Professor, Department of Obstetrics and Gynaecology, Sri Venkateshwara Medical College, NTRUHS, Tirupati, Andhra Pradesh, India

Dr. Sree Latha

Assistant Professor, Department of Obstetrics and Gynaecology, Sri Venkateshwara Medical College, NTRUHS, Tirupati, Andhra Pradesh, India

To study the maternal risk factors for fetal growth restriction in pre-term births

Dr. V Sai Navya, Dr. KV Padmaja and Dr. Sree Latha

DOI: https://doi.org/10.33545/gynae.2022.v6.i6a.1220

Abstract

Introduction: Fetal growth restriction and preterm birth are the two adverse pregnancy outcomes, which remains a prime challenge in maternity care

Materials and Methods: One year retrospective study was conducted in government maternity hospital, Tirupati, to know the maternal risk factors for fetal growth restriction in preterm births

Results: Underweight and manual labor during pregnancy are the significant risk factors for fetal growth restriction in preterm births.

Conclusion: Preterm fetal infants have 2 times higher risks of need for NICU admission and 5 times risk for Neonatal mortality when compared to preterm non-fetal growth restriction infants.

Keywords: Neonatal mortality, prematurity, fetal growth restriction

Introduction

- Fetal growth restriction and preterm birth are the two adverse pregnancy outcomes, which remains a prime challenge in maternity care.
- There are many risk factors that predispose to preterm and FGR separately.
- Paucity in Indian data on maternal risk factors for both preterm FGR.

Aims and objectives

Primary: To determine the risk factors for fetal growth restriction in preterm births. **Secondary:** To compare neonatal mortality rate in preterm babies with and without FGR.

Methodology

- Study design: Retrospective case control study
- Population: Women with preterm delivery (Gestational age: 28 to 36+6 weeks period
- Sample size: 102 cases and 102 controls

Inclusion Criteria

- Singleton preterm births with fetal growth restriction
- Live as well as stillbirths.

Controls

- Consecutive singleton preterm births without fetal growth restriction
- Live as well as stillbirths

Exclusion Criteria

Congenital malformations

Fetal growth restriction is defined as birth weights less than 10^{th} percentile by inter growth-21 charts.

Analysis outcomes: SPSS 21.0

Outcomes

Primary outcome was the association between low body mass index (BMI) and fetal growth restriction in preterm births

Corresponding Author: Dr. V Sai Navya

Post Graduate, Department of Obstetrics and Gynaecology, Sri Venkateshwara Medical College, NTRUHS, Tirupati, Andhra Pradesh, India Secondary outcome: neonatal mortality rates of cases and controls.

Table 1: Comparison of socio demographic risk factors between two groups

Exposure	Preterm FGR [study group]	Preterm non FGR [control group]	Odds ratio (95% confidence	p-
variable	(n=102)	(n=102)	interval)	value
		Maternal Age		
<18 years	0	0	1	
18-35years	100 (98.0%)	(93.1%)	Ref	0.17
>35 years	(2.0%)	(6.9%)	0.27 (0.05-1.34)	
		Socio Economic Status (SES)		
Upper	(2.0%)	(1.0%)	3.02 (0.26-34.68)	
Middle	(34.3%)	(51.8%)	Ref	0.37
Lower	(63.7%)	(47.2%)	2.05 (1.16-3.61)	

Table 2: Comparison of anthropometric risk factors between two groups

Exposure variable	eterm FGR [study group] (n=102) Preterm non FGR [control group] (n=102)		Odds ratio (95% confidence interval)	P-value	
Height (cm)					
<145	13 (12.7%)	10 (9.8%)	1.30(0.47-3.55)	0.79	
145TO 155	66 (64.7%)	69 (67.6%)	0.95(0.48-1.86)		
>155	23 (22.5%)	23 (22.5%)	Ref		
		BMI (kg/m²)			
<18.5(underweight)	51 (50.0%)	10 (9.8%)	8.86(4.07-19.27)		
18.5to 24.9	42 (41.2%)	73 (71.6%)	Ref	< 0.001	
(Normal BMI)	72 (71.270)	75 (71.070)	Rei		
>25(over weight)	9 (8.8%)	19 (18.6%)	1.21(0.50-2.92)		

Table 3: Comparison of maternal lifestyle related risk factors between two groups

Exposure variable Preto	erm FGR [study group] (n=102)	Preterm non FGR [control group] (n=10	02) Odds ratio (95% confidence interv	al) p-value	
		Work			
House wife	60 (58.8%)	73 (71.6%)	Ref		
Sedentary work	21 (20.6%)	27 (26.5%)	0.94(0.48-1.83)	< 0.001	
Manual work	21 (20.6%)	2 (2.0%)	12.77(2.88-56.68)		
		Stress			
No	74 (72.5%)	77 (74.5%)	Ref	0.75	
Yes	28 (27.5%)	25 (24.5%)	1.16(0.63-2.18)		
		Smoking			
Never	65 (63.7%)	83 (81.4%)	Ref		
Passive smoking	37 (36.3%)	19 (18.6%)	2.48(1.31-4.72)	<0.001	
1 to 10	-	-		<0.001	
>10	-	-			

Table 4: Pregnancy outcomes associated with preterm fgr births

Outcome variables	Preterm-FGR [study group] (n=102)	Preterm-Non-FGR [control group] (n=102)	Relative risk (95% CI)	p-value	
Birth weight					
≥2000 gms	35 (34.4%)	90 (88.3%)		<0.001	
<2000 gms	67 (65.6%)	12 (11.7%)	3.02(1.45-2.12)		
Mean+ standard deviation	1740 <u>+</u> 345.76	2363 <u>+</u> 349.13			
NICU admission					
No	36(38.2%)	80(81.6%)		< 0.001	
Yes	58 (61.7%)	18 (18.4%)	2.91(1.91-4.44)		
Neonatal mortality					
No	77(82%)	97(98%)		< 0.001	
Yes	17(18%)	2(2%)	5.29(1.42-19.77)	<0.001	

 Table 5: Multivariate logistic regression analysis of independent risk factors for fgr among preterm births

Exposure variables	Ref	Adjusted Odds ratio [95% CI]	p-value	
	В	MI		
<18.5		8.37(3.83-18.30)	< 0.001	
18.5or above	Ref		<0.001	
	W	ork		
House wife/ Sedentary work	Ref		۵۰ ۵۱	
Manual work		9.99(2.12-46.99)	< 0.01	
	Passive	smoking		
No	Ref	1.57(0.74-3.34)		
Yes				

Conclusion

- Underweight and manual labour during pregnancy are the significant risk factors for FGR in preterm births
- Preterm FGR infants have 2 times higher risk of need for NICU admission and 5 times risk for neonatal mortality when compared to preterm non-FGR infants.
- Interventions to promote early attendance to ANC services, education on awareness of adequate nutrition, avoiding manual labour during pregnancy may significantly decrease the burden of preterm FGR births.

Conflict of Interest

Not available

Financial Support

Not available

References

- 1. Jaafari RM, Ahwaz UMS. Intrauterine growth restriction. Available from url http://220.128.112.10/ftp/medical. Accessed on 16-08-2011. [PubMed]
- Von Beckerath AK, Kollmann M, Rotky-Fast C, Karpf E, Lang U, Klaritsch P. Perinatal complications and long-term neurodevelopmental outcome of infants with intrauterine growth restriction. Am J Obstet Gynecol. 2013 Feb;208(2):130.e1-6. DOI: 10.1016/j.ajog.2012.11.014. Epub 2012 Nov 15.
- 3. Singh G, Chouhan R, Sidhu K. Maternal factors for low birth weight babies. Medical J Armed Forces India. 2009 Jan;65(1):10-2. DOI: 10.1016/S0377-1237(09)80045-2. Epub 2011 Jul 21.
- 4. American College of Obstetricians and Gynecologists. Intrauterine growth restriction. Practice Bulletin no. 12, 2000.
- 5. Washington DC. Available at: http://www.acog.org. Accessed 7 August 2014.
- 6. Royal College of Obstetricians and Gynecologists. The investigation and management of the small for gestational age fetus. Green-top Guideline No. 31, Minor revisions; c2014 Jan. p. 6.
- 7. Barker ED, McAuliffe FM, Alderdice F, Unterscheider J, Daly S, Geary MP, *et al.* The role of growth trajectories to identify fetal growth restriction. Obstet Gynecol. 2013;122:248-254.
- 8. Manning E, Corcoran P, Meaney S, Greene RA. Perinatal Mortality in Ireland, Annual Report 2011. NPEC, Cork; c2013.
- 9. Varvarigou AA. Intrauterine growth restriction as a potential risk factor for disease onset in adulthood. J Pediatr Endo-crinol Metab. 2010;23:215-224.
- Ornoy A. Prenatal origin of obesity and their complications: gestational diabetes, maternal overweight and the paradoxical effects of fetal growth restriction and macrosomia. Reprod Toxicol. 2011;32(2):205-212.
- 11. Muhammad T, Khattak AA, Shafiq-ur-Rehman, Khan MA, Khan A, Khan MA. Maternal factors Associated with intrauterine growth restriction. J Ayub Med Coll Abbottabad. 2010;22(4):64-69.
- 12. Royal College of Obstetricians and Gynaecologist. The investigation and management of the small for gestational age fetus. Green-top guideline No 31: 2nd ed. London: RCOG Press; c2013. p. 1-34.
- 13. Unterscheider J, Daly S, Geary MP, McAuliffe FM, Kennelly MM, Morrison JJ, *et al.* Optimizing the definition

- of intrauterine growth restriction results of the multicenter prospective Porto study AJOG. 2013;208(4):290-291.
- 14. Radulescu L, Ferechide D, Popa F. The importance of fetal gender in intrauterine growth restriction. J Med Life. 2013;6(1):38-39.

How to Cite This Article

Navya VS, Padmaja KV, Latha S. To study the maternal risk factors for fetal growth restriction in pre-term births. International Journal of Clinical Obstetrics and Gynaecology. 2022;6(6):04-06.

Creative Commons (CC) License

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.