A clinical study on Doppler velocimetry of umbilical artery and middle cerebral artery in post-dated pregnancy in the prediction of fetal outcome

Dr. Rupali Mungase, Dr. Satish Shetty and Dr. Suchitra Somkuwar

DOI: https://doi.org/10.33545/gynae.2024.v8.i2a.1433

Abstract

Background: Doppler ultrasound velocimetry of umbilical and fetal vessels has become established method of antenatal monitoring, allowing non-invasive assessment of fetal circulation. The objective is to study the fetal Doppler indices named umbilical artery (UA) - Pulsatility index (PI), Middle cerebral artery (MCA)-Pulsatility index (PI) and MCA - PI/ UA - PI ratio i.e. Cerebroplacental Ratio (CPR) in post-dated pregnancies and their correlation with perinatal outcome.

Methodology: A Prospective observational study conducted on 200 pregnant women having gestational age > 40 weeks in study period from April 2019 to March 2020 at District Hospital, Dharwad. Detailed history of present pregnancy & past obstetric history taken. Thorough examination of patient done. USG Doppler studies were done, above mentioned Doppler parameters were assessed. Apgar score of the neonates were calculated at 1 min and 5 min. They were divided into two groups based on the presence or absence of adverse perinatal outcome.

Results: Women with adverse perinatal outcome shows higher UA-PI (> 0.82) with the specificity of 87% and sensitivity of 50%, had higher cases with oligohydramnios (61%). Adverse neonatal outcome was much higher in the 41-42 weeks of gestation (33.33%) as compared to the 40-41 weeks of gestation (11.18%). MCA - PI with value (< 1.0) shows good ability to predict the mode of delivery with the specificity of 76% and sensitivity of 44.8%. MCA-PI and CPR were not helpful in predicting the adverse perinatal outcome.

Conclusion: Doppler indices including MCA-PI, CPR were not useful in predicting adverse neonatal outcome in post-dated pregnancies without any high risk factor. However, UA-PI appears to have good ability to predict adverse neonatal outcome and considered best one of them.

Keywords: Post-dated pregnancy, Doppler velocimetry, perinatal outcome

Introduction

Post-dated pregnancy is defined as one which has crossed expected date of delivery. Prolonged pregnancies are those pregnancies advancing beyond expected date of delivery [1]. ACOG (American College Of Obstetricians and Gynaecologists) and The WHO (World Health Organization) had defined post -term pregnancy as that lasts 42weeks (294 days) or more from the first day of the last menstrual period [2,3]. According to ACOG recommendation-Early term - 37-0/7 weeks of gestation through 38-6/7 weeks of gestation. Full term - 39-0/7 weeks of gestation through 40 - 6/7 weeks of gestation. Late term - 41-0/7 weeks of gestation through 41-6/7 weeks of gestation. Post term - 42-0/7 weeks of gestation and beyond [4].

Incidence of post-dated pregnancy has been reported to be between 4-14% with an average of 10.5% [5]. Incidence of post term pregnancy is about 5.5% of all pregnancies [6]. Prolongation of pregnancy complicates upto 10% of all pregnancy and carries increase risk to mother and fetus [7,8].

Recent studies have shown that the risk to the fetus and to the mother in continuing the pregnancy beyond the estimated date of delivery is higher than what was estimated earlier [9]. The purpose of this study is to assess the effect of pregnancy beyond the 40 weeks on the Doppler flow velocity waveforms in the umbilical artery and middle cerebral artery and CP Ratio and to correlate the flow velocity waveforms with the perinatal outcome. Doppler ultrasound velocimetry of Utero placental, Umbilical and fetal vessels has become
established method of antenatal monitoring, allowing non-invasive assessment of fetal circulation [10]. It’s indices provides important information on the hemodynamic of the vascular area under study. Circulatory changes reflected in certain fetal Doppler waveforms predict adverse perinatal outcome [11]. Umbilical arteries are the common vessels assessed by Doppler ultrasound but recent studies confirm the efficacy of middle cerebral artery Doppler assessment for detecting fetal compromise [12-13]. Doppler sonography provides a unique opportunity to investigate human fetal hemodynamics and to use these findings for fetal surveillance. The Doppler effect, first reported by Christian Doppler in 1842 describes the apparent variation in frequency of a light or a sound wave as the source of the wave approaches or moves away relative to an observer. This apparent change in sound pitch (Doppler effect), or what is also termed the frequency shift, is proportional to the speed of movement of the sound-emitting source [14]. Doppler indices that are commonly used in obstetric practice are:

\[f_d = \frac{2(f_0 \cdot \cos(A) \cdot V)}{c} \]

\[\text{PI} = \frac{S - D}{M} \]

\[\text{RI} = \frac{S - D}{S} \]

\[\text{S/D} = \frac{S}{D} \]

\[\text{CPR} = \frac{\text{PI of MCA}}{\text{PI of UA}} \]

Fig 1: The Doppler effect (fd) is dependent on the initial frequency of the ultrasound transducer (f0), the velocity of flow (V) of the blood within a vessel, and the cosine of the angle (A) that the ultrasound beam makes with the direction of blood flow. The frequency shift (fd) is displayed as a time-dependent plot within a cardiac cycle and is inversely proportional to the constant (c), which reflects a constant related to the medium in which the sound is traversing. Doppler indices commonly used in obstetric imaging. c, constant related to the medium in which the sound is traversing; D, diastole; M, mean; PI, pulsatility index; RI, resistance index; S, systole

Fig 2: Doppler waveforms of the umbilical artery in a normal fetus in the third trimester of pregnancy. Note the increased end-diastolic velocity (D), consistent with a low impedance circulation. S, peak systole
Fig 3: Abnormal umbilical artery Doppler waveforms; decreased end-diastolic velocity (A), absent end-diastolic velocity (B), reversed end-diastolic velocity (C). In 2013, the International Society for Ultrasound in Obstetrics and Gynecology (ISUOG) recommended taking Doppler measurements from a free loop of cord for the sake of simplicity and consistency.

Fig 4: Doppler waveforms of the middle cerebral artery in a normal fetus (A) and in a hypoxemic fetus (B). Note the increase in end-diastolic velocity in fetus B resulting from a low-impedance cerebral circulation as part of the brain-sparing reflex.

Fig 5: Circle of Willis shown on color Doppler imaging. ACA, anterior cerebral artery; MCA, middle cerebral artery; PCA, posterior cerebral artery. (From Ultrasound in Obstetrics & Gynecology: A Practical Approach. Available at www.openultrasound.com)
Cerebroplacental Ratio: CPR is emerging as an important predictor of adverse pregnancy outcome, and it is used for the assessment of fetal wellbeing. It is the ratio of Pulsatility Index of Middle Cerebral Artery to the Pulsatility Index of Umbilical Artery.

Aim: To predict and improve fetal outcome by doing Doppler study

Materials and methods
This study was conducted in department of Obstetrics and Gynecology, District hospital, Dharwad accredited to DNB course.

Study Design: A Prospective Observational study.

Sample Size: 200 patients.

Inclusion criteria: This study included the singleton pregnancy with cephalic presentation with gestational age more than 40 weeks without any high risk factor. Careful and detail history including the information regarding the age, details about previous conception, antenatal care, and booking status was collected. Complete general physical examination, systemic examination and obstetric examination was done. Routine and relevant investigations such as Haemoglobin, Blood Grouping and Rh typing, VDRL, HIV, HBsAg, RBS, analysis of urine (albumin, sugar, microscopy) were all done. Period of gestation was derived from history of LMP and clinical examination and confirmed by 1st trimester ultrasound.

Ultrasound Examination - The following ultrasound parameters were assessed

1. Routine ultrasound for fetal biometry which includes BPD (Biparietal diameter), Femur Length (FL), Abdominal circumference (AC), Head circumference (HC), Estimated fetal weight calculated automatically using Hadlocks formula, AFI were calculated.
2. USG Doppler studies - a) Umbilical artery pulsatility index b) Middle cerebral artery pulsatility index. c) Cerebroplacental ratio (CPR) i.e. MCA PI /UA PI for the evaluation of fetal status in utero.
3. APGAR score - The neonates were subjected to APGAR scoring at 1 and 5 min.

Doppler indices were calculated by using
https://medicinafetalbarcelona.org/calc/ the app.
Single Doppler study of MCA and UA was done. The apparatus used were 1) Aloka SSD 1100 prosound alpha 6 ultrasound machine.
Mindray DC-N2 ultrasound machine, with the Doppler unit and convex linear transducer 3.5 MHz.
The technique of UA and MCA Doppler measurement: All the examination were made with the patient lying in semi recumbent position with a lateral tilt. Doppler transducer was placed on the abdominal wall over the uterus and carefully manipulated till Doppler signals appropriate for that particular vessels were identified. All the examinations were performed only during foetal apnoea and foetal inactivity. The signal was recorded for a minimum of 5 to 8 cycles with the blood flow velocity waveforms of equal shape and amplitude and satisfactory quality. Then the image was frozen and measurements were taken. An area of amniotic cavity with several loops of umbilical cord was selected for the Umbilical artery Doppler indices. A minimum of 3 separate readings were recorded and averaged before the final values obtained.

The standard plane for the measurement of Middle cerebral artery Doppler indices was transthalamic plane which contains the thalami and cavum septum pellucidum. Care was taken not to exert pressure on the fetal head because this will alter the flow velocity waveforms from the MCA. The patient were followed up till delivery. Mode of delivery were noted in each case. The study population was divided into 2 groups with 1) normal Doppler indices 2) Abnormal Doppler indices and their perinatal outcome was studied. Adverse perinatal outcome was defined as the presence of 1 or more of the following: caesarean delivery for fetal distress, Apgar score <7 at 1 and 5 min, Meconium aspiration syndrome, Neonatal intensive care unit admission and perinatal mortality.

Results and Discussion
Age distribution
The average age was 23.85 +/- 2.81 years.
The age distribution is shown in figure number.

![Fig 6: Age distribution](https://medicinafetalbarcelona.org/calc/)
Table 1: Demographic data of the two studied group

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Adverse (n=31)</th>
<th>Normal (n=169)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal age</td>
<td>22.67 +/- 2.885</td>
<td>24.09 +/- 2.071</td>
<td>0.009</td>
</tr>
<tr>
<td>Gestational age at delivery</td>
<td>284 +/- 14.81</td>
<td>286 +/- 13.22</td>
<td>0.0002</td>
</tr>
<tr>
<td>Gravidity</td>
<td>1.58 +/- 1.13</td>
<td>2.05 +/- 0.76</td>
<td>0.02</td>
</tr>
<tr>
<td>Parity</td>
<td>0.85 +/- 0.95</td>
<td>1.25 +/- 0.599</td>
<td>0.21</td>
</tr>
</tbody>
</table>

The average age of the patients in the group which had adverse neonatal outcomes was 22.67 years, whereas that of the patients in the group which had normal neonatal outcomes was 24.09 years. The gestational age (in days) at delivery was 284 in those with adverse neonatal outcomes and 286 in those with normal neonatal outcomes. While the parity between the two groups were comparable (p value 0.21), the gravidity was lower in the group with adverse events (1.58) as compared to those with normal outcomes (2.05) with statistically significant difference (p value 0.02). These observations are explained by the fact that this was an observational study of an unselected population with no matching process to ensure the comparability of the groups.

Table 2: Comparison between both the groups as regards: UA-PI, MCA-PI, MCA-PI/UA-PI ratio and EFW

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Adverse (n=31)</th>
<th>Normal (n=169)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFW on USG</td>
<td>3.11 +/- 0.239</td>
<td>3.0 +/- 0.294</td>
<td>0.058</td>
</tr>
<tr>
<td>Neonatal birthweight</td>
<td>3.06 +/- 2.54</td>
<td>3.0 +/- 0.26</td>
<td>0.19</td>
</tr>
<tr>
<td>Umbilical artery PI</td>
<td>0.81 +/- 0.169</td>
<td>0.76 +/- 0.138</td>
<td>0.08</td>
</tr>
<tr>
<td>MCA PI</td>
<td>1.2 +/- 0.178</td>
<td>1.19 +/- 0.167</td>
<td>0.65</td>
</tr>
<tr>
<td>CPR</td>
<td>1.5 +/- 0.276</td>
<td>1.35 +/- 0.291</td>
<td>0.29</td>
</tr>
</tbody>
</table>

The estimated fetal weight on ultrasonography was 3.11 kg in those with adverse neonatal outcomes while that with normal neonatal outcomes was 3.0 kg, with no statistically significant difference between the groups. The actual neonatal birth weights was 3.06 kg in those with adverse neonatal outcomes while that with normal neonatal outcomes was 3.0 kg, with no statistically significant difference between the groups. The umbilical artery PI was 0.81 in those with adverse neonatal outcomes while that with normal neonatal outcomes was 0.76, with no statistically significant difference between the groups. The MCA PI was 1.2 in those with adverse neonatal outcomes while that with normal neonatal outcomes was 1.19, with no statistically significant difference between the groups. The CPR was 1.5 in those with adverse neonatal outcomes while that with normal neonatal outcomes was 1.55, with no statistically significant difference between the groups.

Table 3: Comparison between both the groups as regards the amniotic fluid volume

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Adverse (n=31)</th>
<th>Normal (n=169)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFI value</td>
<td>6.13 +/- 2.27</td>
<td>7.97 +/- 3.02</td>
<td>0.001</td>
</tr>
<tr>
<td>Normal AFI</td>
<td>12/31</td>
<td>141/169</td>
<td></td>
</tr>
<tr>
<td>Oligohydramnios</td>
<td>19/31 (61%)</td>
<td>28/169(16.5%)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

The average AFI of those with adverse neonatal outcomes was 6.13 cm while that with normal neonatal outcomes was 7.97 cm, and the difference between the groups was statistically significant. Among those who had an adverse neonatal outcome, 61% had oligohydramnios. Whereas among those who had normal neonatal outcomes, only 16.5% had oligohydramnios. The difference between the groups was statistically significant. The proportion of patients with oligohydramnios who had a LSCS was 60.9% (25/41), whereas the proportion of patients with normal AFI who had an LSCS was 18.2%, and the difference between the groups was statistically significant.

Table 3A: Relation between the AFI and mode of delivery

<table>
<thead>
<tr>
<th>Amniotic fluid</th>
<th>Normal (>5 cm)</th>
<th>Abnormal (<=5 cm)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaginal delivery</td>
<td>130</td>
<td>16</td>
<td>0.0001</td>
</tr>
<tr>
<td>LSCS</td>
<td>29</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

The average AFI of those with adverse neonatal outcomes was 6.13 cm while that with normal neonatal outcomes was 7.97 cm, and the difference between the groups was statistically significant. Among those who had an adverse neonatal outcome, 61% had oligohydramnios. Whereas among those who had normal neonatal outcomes, only 16.5% had oligohydramnios. The difference between the groups was statistically significant. The proportion of patients with oligohydramnios who had a LSCS was 60.9% (25/41), whereas the proportion of patients with normal AFI who had an LSCS was 18.2%, and the difference between the groups was statistically significant.
Among those who had an adverse outcome, all of them were delivered by LSCS. However, among those who had normal neonatal outcome, only 13% delivered by LSCS. All those who had an adverse neonatal outcome underwent an LSCS due to meconium stained liquor or non-reactive fetal heart rate pattern. Whereas, those who had a normal neonatal outcome, underwent LSCS due to CPD, failed IOL, severe oligohydramnios and obstructed labour.

The adverse neonatal outcome was much higher in the 41-42 weeks gestation group (33.33%), as compared to the 40-41 weeks gestation group (11.18%). The mean birth weight and Apgar score at 1 minute and 5 minutes were similar in both the 40-41 weeks gestation age and 41-42 weeks gestational age groups.

We used UA-PI cut off value was 0.82 based on the study by Ahmed Maged et al. The UA-PI was not useful in predicting the mode of delivery. (p value 0.747). The UA-PI appeared to have a good ability to “rule out” the adverse neonatal outcome, considering that it has a specificity of 87% (101/116). However, the sensitivity of the test is quite poor at 50% (16/32). The MCA PI appeared to have a good ability to “rule out” CS, considering that it has a specificity of 76% (130/171). However, the sensitivity of the test is quite poor at 44.8% (16/32). The proportion of patients with a CPR >10th percentile who had a poor neonatal outcome was 21.05% (4/19) and those with a CPR >10th percentile who had a poor neonatal outcome was 14.91% (27/154) and there was no statistically significant difference between the groups. This implies that CPR does.

As shown in table number, it can be seen that there was no correlation between an Umbilical Artery PI value (using cut off 0.82) and the mode of delivery. (p value 0.747).

For the UA PI to predict vaginal delivery, the following accuracy statistics are noted.

<table>
<thead>
<tr>
<th>Gestational age</th>
<th>Number</th>
<th>Percentage</th>
<th>Mean birth weight</th>
<th>Apgar score at 1 minute</th>
<th>Apgar score at 5 minutes</th>
<th>NICU admission</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-41</td>
<td>161</td>
<td>80.5%</td>
<td>3007 grams</td>
<td>7</td>
<td>8</td>
<td>18/161</td>
</tr>
<tr>
<td>41-42</td>
<td>39</td>
<td>19.5%</td>
<td>3021 grams</td>
<td>7</td>
<td>8</td>
<td>13/39</td>
</tr>
</tbody>
</table>

The UA PI (using cut off value 0.82) was not useful in predicting the NICU admission (p value 0.3207).

<table>
<thead>
<tr>
<th>UA-PI</th>
<th>Normal <0.82</th>
<th>Abnormal >0.82</th>
<th>MCA-PI</th>
<th>Normal >1.0</th>
<th>Abnormal <1.0</th>
<th>>10th percentile</th>
<th><10th centile</th>
<th>CPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaginal delivery</td>
<td>86</td>
<td>60</td>
<td>0.747</td>
<td>130</td>
<td>16</td>
<td>0.024</td>
<td>134</td>
<td>12</td>
</tr>
<tr>
<td>LSCS</td>
<td>30</td>
<td>24</td>
<td>0.0001</td>
<td>26</td>
<td>5</td>
<td>0.782</td>
<td>27</td>
<td>4</td>
</tr>
<tr>
<td>Adverse outcome</td>
<td>15</td>
<td>16</td>
<td>0.0001</td>
<td>145</td>
<td>24</td>
<td>154</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Normal outcome</td>
<td>101</td>
<td>16</td>
<td>0.0001</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the UA PI to predict adverse neonatal outcomes, the following accuracy statistics are noted.

<table>
<thead>
<tr>
<th>MCA PI</th>
<th>Normal >1.0</th>
<th>Abnormal <1.0</th>
<th>Chi-square test P value 0.0001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaginal delivery</td>
<td>130</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>LSCS</td>
<td>41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specificity is 86.21% (95% CI- 78.74% to 91.98%). As shown in table number, it can be seen that there was a statistically significant correlation between Middle Cerebral Artery PI value (using cut off 0.82) and the mode of delivery.
delivery. (p value 0.024). For the MCA PI to predict vaginal
delivery, the following accuracy statistics are noted

<table>
<thead>
<tr>
<th>MCA PI Normal >1.0</th>
<th>MCA PI Abnormal <1.0</th>
<th>Chi-square test P value 0.782 Statistically significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adverse outcome</td>
<td>26</td>
<td>5</td>
</tr>
<tr>
<td>Normal outcome</td>
<td>145</td>
<td>24</td>
</tr>
</tbody>
</table>

Sensitivity 24.07% (13/13+41) 13.49% to 37.64% Specificity
89.04% (130/130+16) 82.81% to 93.60% For the MCA PI to
predict adverse neonatal outcomes, the following accuracy
statistics are noted Sensitivity 16.13% (5/5+26) (95% CI 5.45% to
33.73%) Specificity 85.80% (145+24) (95% CI 79.61% to
90.68%).

<table>
<thead>
<tr>
<th>CPR >10th centile</th>
<th><10th centile</th>
<th>Chi-square test P value 0.3207 Not statistically significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaginal delivery</td>
<td>134</td>
<td>12</td>
</tr>
<tr>
<td>LSCS</td>
<td>56</td>
<td>8</td>
</tr>
</tbody>
</table>

As can be seen in table number, there is no statistically
significant correlation between a CPR <10th centile and mode of
delivery (p value 0.3207). For a CPR <10th centile, the following
accuracy statistics are noted. Sensitivity 12.50% (8/8+56) 5.55% to
23.15%.

<table>
<thead>
<tr>
<th>CPR >10th percentile</th>
<th>CPR <10th percentile</th>
<th>Chi-square test P value 0.509 Not statistically significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adverse outcome</td>
<td>27</td>
<td>4</td>
</tr>
<tr>
<td>Normal outcome</td>
<td>154</td>
<td>15</td>
</tr>
</tbody>
</table>

Specificity 91.78% (134/134+12) 86.08% to 95.68% as can be
seen in table number, there is no statistically significant
relation between a CPR <10th centile and adverse neonatal
outcomes (p value 0.3207).

For a CPR <10th centile in its ability to predict adverse neonatal
outcomes, the following accuracy statistics are noted.
Sensitivity 12.90% (4/4+27) 3.63% to 29.83% Specificity
91.12% (154/15+154) 85.78% to 94.95%.

Conclusion
From this study it is concluded that UA PI values, MCA PI
values, CPR values are similar between the neonates who had
good and adverse neonatal outcome in low risk post-dated
pregnancies.
UA PI value of > 0.82 is helpful in predicting adverse neonatal
outcome.
UA PI value of > 0.82 is not helpful in predicting the mode of
delivery.
MCA PI value of > 1.0 is not helpful in predicting the adverse
neonatal outcome.
MCA PI value of > 1.0 is helpful in predicting the mode of
delivery.
CPR < 10th percentile is not helpful in predicting the adverse
perinatal outcome.
CPR < 10th percentile is not helpful in predicting the mode of
delivery.

Recommendation
Ultrasound Doppler parameters are to be used cautiously and on
selected basis in the management of post-dated pregnancies.
Further large scale prospective studies are required in the topic of
Ultrasound Doppler study in post-dated pregnancy.

Acknowledgement: Not available.

Author’s Contribution: Not available.

Conflict of Interest: Not available.

Financial Support: Not available.

References
1. Arias F, Bhide AG, Arulkumaran S, Damanai K, Daftary
 SN, editors. Practical Guide to High Risk Pregnancy and
2. American College of Obstetricians and Gynecologists
 Practice Bulletin: Management of postterm pregnancy,
 September; c2004.
3. World Health Organization (WHO): Recommended
 definition terminology and format for statistical tables
 related to perinatal period and rise of a new certification for
 a cause of perinatal deaths. Modifications recommended by
 FIGO as amended, October 14, 1976. Act Obstet Gynaecol
 Scan. 1977;56:347.
4. Spong CY. Defining term pregnancy: recommendations
 from the Defining Term Pregnancy Workgroup. Jama. 2013
 Jun 19;309(23):2445-2446.
5. Bakketeg L, Bergsjo P. Post-term pregnancy - magnitude
 of the problem. In: Chalmers I, Elkin M, Kierse MJNC
 (Eds). Effectivecare in pregnancy and childbirth. London:
 Practice bulletin no. 146: Management of late-term and post
term pregnancies. Obstetrics and gynecology. 2014;124(2 Pt
 1):390.
7. Olesen AW, Westergaard JG, Olsen J. Perinatal and
 maternal complications related to postterm delivery: A
8. Norwitz ER, Snegovskikh VV, Caughey AB. Prolonged
 Pregnancy: When Should We Intervene? Clinical obstetrics
9. Heinstad R, Romundstad PR, Salvesen KÅ. Induction
 of labour for post-term pregnancy and risk estimates for
 intrauterine and perinatal death. Acta obstetricia et
10. Dubiel M, Breborowicz GH, Marsal K, Gudmundsson S.
 Fetal adrenal and middle cerebral artery Doppler
 velocimetry in high-risk pregnancy. Ultrasound in
 Obstetrics and Gynecology: The Official Journal of the
 International Society of Ultrasound in Obstetrics and

How to Cite This Article

Creative Commons (CC) License
This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.