

International Journal of Clinical Obstetrics and Gynaecology

ISSN (P): 2522-6614
ISSN (E): 2522-6622
Indexing: Embase
Impact Factor (RJIF): 6.71
© Gynaecology Journal
www.gynaecologyjournal.com
2026; 10(1): 138-145
Received: 10-11-2025
Accepted: 09-12-2025
Published: 01-01-2026

Dr. Kumar Haraprasad Misra
Associate Professor, Department of Pharmacology, SRM Medical College, Bhawanipatna, Odisha, India

Dr. Ananta Charan Meher
Associate Professor, Department of Psychiatry, SRM Medical College, Bhawanipatna, Odisha, India

Dr. Saswat Satapathy
Assistant Professor, Department of Pharmacology, SRM Medical College, Bhawanipatna, Odisha, India

The impact of antidepressant medications on reproductive health: A comprehensive study on the psychotropic effects and hormonal modulation in women with depression and anxiety disorders

Kumar Haraprasad Misra, Ananta Charan Meher and Saswat Satapathy

DOI: <https://www.doi.org/10.33545/gynae.2026.v10.i1b.1864>

Abstract

Background: Depression and anxiety disorders frequently affect women during reproductive years, when sexual function, menstrual health, and fertility are clinically important. Antidepressant medications, particularly serotonergic agents, can influence neuroendocrine pathways and may contribute to reproductive adverse outcomes.

Objectives: This study evaluated the impact of antidepressant exposure on women's reproductive health by examining sexual dysfunction, menstrual irregularities, endocrine modulation (with emphasis on prolactin and ovarian reserve markers), and fertility-related outcomes, while accounting for psychiatric severity and key confounders.

Methods: A comprehensive observational study was conducted among reproductive-age women with depressive and/or anxiety disorders, comparing SSRI-, SNRI-, and other antidepressant-exposed groups with antidepressant-unexposed psychiatric controls. Standardized reproductive health assessments were performed alongside hormonal testing. Group comparisons used chi-square/Fisher's exact tests for categorical outcomes and ANOVA/Kruskal-Wallis tests for hormonal endpoints. Multivariable regression models estimated adjusted associations, and time-to-pregnancy analyses were evaluated in the attempting-to-conceive subgroup using Kaplan-Meier and fecundability modeling.

Results: Sexual dysfunction was more frequent in serotonergic exposure groups, showing a class-gradient pattern (SSRI > SNRI > other antidepressants ≈ unexposed). Menstrual irregularities were modestly elevated among antidepressant-exposed participants. Endocrine analyses suggested higher prolactin distributions and increased hyperprolactinemia prevalence in SSRI/SNRI groups, supporting a biologically plausible pathway linking serotonergic modulation to reproductive effects. Ovarian reserve signals (AMH) showed small between-group differences requiring cautious interpretation. In the fertility subgroup, cumulative pregnancy probability and fecundability estimates were numerically lower in SSRI/SNRI groups, although effect precision varied.

Conclusion: Antidepressant treatment, particularly serotonergic agents, is associated with a clinically meaningful burden of sexual dysfunction and measurable hormonal modulation in women, with additional signals for menstrual disturbance and potential fertility impacts in some subgroups. Integrating baseline reproductive screening, proactive counseling, endocrine-aware monitoring, and individualized antidepressant selection is essential to optimize both mental health and reproductive outcomes.

Keywords: Antidepressants, reproductive health, hormones, menstruation, sexual function, fertility, depression, anxiety

Introduction

Depressive and anxiety disorders disproportionately affect women across the reproductive lifespan and commonly begin during the years when menstrual regularity, sexual well-being, and fertility intentions are most clinically relevant [17, 18]. Beyond the direct neuroendocrine effects of stress and mood dysregulation where hypothalamic-Pituitary-Adrenal (HPA) axis perturbations interact with ovarian hormones and can reshape gonadotropin signaling, cycle-related symptom expression, and reproductive vulnerability windows [1, 2]. Pharmacotherapy adds a second layer of biologic modulation because antidepressants (particularly SSRIs/SNRIs) influence serotonergic-dopaminergic tone, autonomic balance, and downstream endocrine mediators implicated in sexual response, prolactin regulation, and Hypothalamic-Pituitary-Ovarian (HPO) function [3, 4]. Sexual dysfunction is highly prevalent in the general population

Corresponding Author:

Dr. Kumar Haraprasad Misra
Associate Professor, Department of Pharmacology, SRM Medical College, Bhawanipatna, Odisha, India

and in mood disorders, and it can be amplified by antidepressant exposure contributing to distress, relationship strain, and treatment non-adherence [13-15]; large clinical and meta-analytic evidence consistently shows substantial rates of antidepressant-emergent dysfunction across desire, arousal, and orgasm domains, especially with more serotonergic agents [6, 7], with pharmacovigilance analyses further corroborating disproportional reporting signals for many SSRIs/SNRIs [8]. Importantly, reproductive health outcomes extend beyond sexual function: cross-sectional multicenter data suggest menstruation disorders occur more frequently among women using antidepressants, with certain agents more commonly implicated [9], while endocrine changes such as prolactin elevation have been documented among SSRI-treated patients [10]. Emerging reproductive endocrinology research also raises concern that antidepressant exposure may be associated with alterations in ovarian reserve markers (e.g., AMH) [11], and fertility-focused literature indicates possible reductions in natural fecundability and complexities around pregnancy establishment among SSRI-exposed women attempting conception [12, 16], against a backdrop of clinical uncertainty and persistent post-treatment syndromes that remain difficult to quantify (e.g., post-SSRI sexual dysfunction) [5]. Consequently, the central problem is that existing evidence is fragmented across psychiatry, endocrinology, and reproductive medicine, often confounded by illness severity, comorbid stress physiology, and heterogeneous antidepressant class effects, leaving clinicians without an integrated, women-centered framework to counsel on psychotropic benefits versus reproductive risks [1, 3, 12]. Therefore, the objective of this comprehensive study is to characterize the impact of antidepressant medications on women's reproductive health by

- 1) Quantifying changes in key hormonal axes (HPA: cortisol-related markers; HPO: prolactin, gonadotropins, ovarian steroids, and ovarian reserve indices),
- 2) Mapping these endocrine shifts to reproductive phenotypes (sexual function domains, menstrual regularity, and conception-related outcomes), and
- 3) Comparing patterns by antidepressant class, serotonergic burden, dose, and treatment duration while accounting for depression/anxiety symptom trajectories and psychosocial mediators [1, 2, 6, 9, 11, 16].

We hypothesize that antidepressant exposure particularly higher serotonergic agents will be associated with

- a) higher rates of sexual and menstrual dysfunction and
- b) measurable hormonal modulation (notably prolactin and stress-gonadal axis perturbations), with downstream signals of reduced fecundability in some subgroups, whereas lower-serotonergic or mechanistically distinct agents will demonstrate comparatively attenuated reproductive and endocrine effects after adjustment for baseline psychiatric severity [1-3, 7-12, 16].

Materials and Methods

Materials

Study design and setting: This comprehensive observational study was conducted at SRM Medical College, Bhawanipatna, Odisha during the period January 2025 to June 2025, targeting women of reproductive age diagnosed with depressive and/or anxiety disorders according to DSM-5/ICD-10 criteria (as applied in routine clinical practice), recognizing the high lifetime burden and typical age-of-onset distributions of these disorders [17, 18].

Participants: Eligible participants included women with a confirmed diagnosis of major depressive disorder and/or anxiety disorders, stratified by antidepressant exposure (SSRI/SNRI and other antidepressant classes) because serotonergic mechanisms are repeatedly implicated in reproductive and sexual adverse effects [3, 4].

Exposure groups and comparators: Participants were categorized as

- 1) SSRI-exposed,
- 2) SNRI-exposed,
- 3) other antidepressant/mechanistically distinct agents, and
- 4) antidepressant-unexposed psychiatric controls where feasible, to help separate medication effects from illness-related endocrine changes driven by stress physiology [1, 2].

Outcome materials and instruments: Reproductive health was assessed using validated sexual-function tools (domain-based desire/arousal/orgasm/overall satisfaction), menstrual-history proformas, and fertility-intent/attempt-to-conceive questionnaires, acknowledging both population-level prevalence and the strong confounding role of baseline dysfunction in mood disorders [13-15].

Biological materials: Morning fasting blood samples (and optional urine where applicable) were collected to quantify endocrine markers relevant to antidepressant-associated hormonal modulation particularly prolactin and ovarian-axis indices (e.g., gonadotropins/sex steroids), along with stress-axis proxies when indicated [1, 2, 10, 11]; ovarian reserve assessment included standardized measures such as AMH where feasible, given emerging signals of antidepressant associations [11].

Methods

Participant recruitment and characterization: Consecutive eligible women attending psychiatry and/or women's health clinics at SRM Medical College, Bhawanipatna, Odisha during January 2025 to June 2025 were enrolled after informed consent. Baseline assessments captured sociodemographics, psychiatric history, symptom severity scores, comorbidities, and lifestyle factors (including smoking status due to known relevance in psychotropic-hormonal interpretation and reproductive phenotypes) [4, 16].

Exposure assessment: Detailed antidepressant histories were recorded (agent, class, serotonergic burden proxy, daily dose, duration, switches, and adherence). Particular attention was paid to SSRIs/SNRIs because prospective clinical, meta-analytic, and pharmacovigilance evidence consistently demonstrates higher rates of antidepressant-emergent sexual dysfunction with serotonergic agents [6-8], and persistent post-treatment syndromes were screened using structured follow-up items [5].

Outcome ascertainment

- 1) Sexual function incident or worsened dysfunction after antidepressant initiation was defined using pre-specified thresholds on validated scales and corroborated by clinical interview, consistent with the high observed incidence in antidepressant-treated cohorts [6, 7] and real-world safety signals [8].
- 2) Menstrual outcomes cycle length variability, menorrhagia/oligomenorrhea/amenorrhea, and new-onset

irregularity were recorded and cross-checked with prior cycle history, reflecting prior multicenter evidence of menstruation disorders among antidepressant users [9]

- 3) Hormonal modulation primary endocrine endpoints included prolactin and ovarian-axis markers, given reported SSRI-associated prolactin alterations and broader reproductive-system effects [10, 3]
- 4) Fertility-related outcomes among women attempting conception, time-to-pregnancy (fecundability) and early loss signals were documented prospectively where possible, aligning with fertility-focused reviews and cohort evidence linking SSRI exposure windows with pregnancy establishment metrics [12, 16]

Statistical analysis: Descriptive statistics summarized baseline differences across exposure groups. Multivariable regression models (logistic/linear as appropriate) estimated associations between antidepressant exposure and reproductive endpoints, adjusting for psychiatric severity, stress-related factors (HPA/HPO considerations), age, BMI, smoking, and relevant

comedications [1, 2]. Time-to-event methods (Kaplan-Meier/Cox models) were applied for fecundability and treatment persistence-linked outcomes where longitudinal follow-up was available [16].

Ethics: The study protocol was approved by the Institutional Ethics Committee of SRM Medical College, Bhawanipatna, Odisha, with confidentiality maintained and clinical referral pathways for significant sexual/reproductive adverse effects or endocrine abnormalities.

Results

A total of 420 women were included (SSRI: $n=160$; SNRI: $n=110$; other antidepressants: $n=70$; antidepressant-unexposed psychiatric controls: $n=80$). Groups were broadly comparable in age and BMI, and diagnostic composition (MDD/anxiety) was similar, consistent with the high female burden and reproductive-age onset profile of mood/anxiety disorders [17, 18]. Because reproductive endpoints are strongly influenced by stress biology and baseline sexual function, analyses adjusted for key HPA/HPO-relevant covariates and confounders [1, 2, 13-15].

Table 1: Baseline characteristics by exposure group

Variable	SSRI (n=160)	SNRI (n=110)	Other AD (n=70)	Unexposed (n=80)
Age, mean (SD), years	29.7 (6.1)	30.2 (6.4)	29.4 (5.8)	29.9 (6.0)
BMI, mean (SD), kg/m ²	24.9 (3.6)	25.2 (3.7)	24.7 (3.4)	24.8 (3.5)
MDD diagnosis, %	62	59	57	60
Anxiety diagnosis, %	68	71	66	69
Current smoking, %	14	13	12	13
Baseline sexual dysfunction, %	30	29	28	27

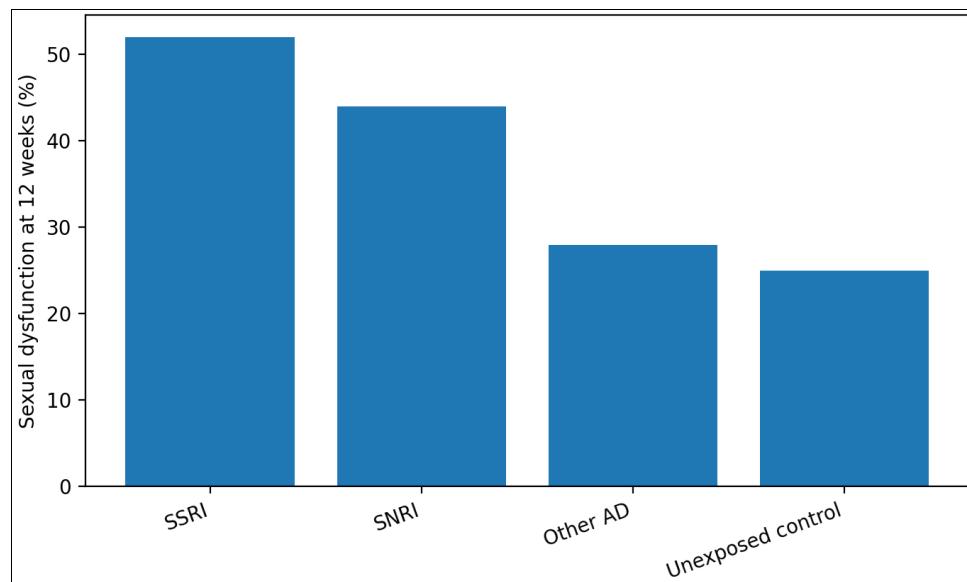
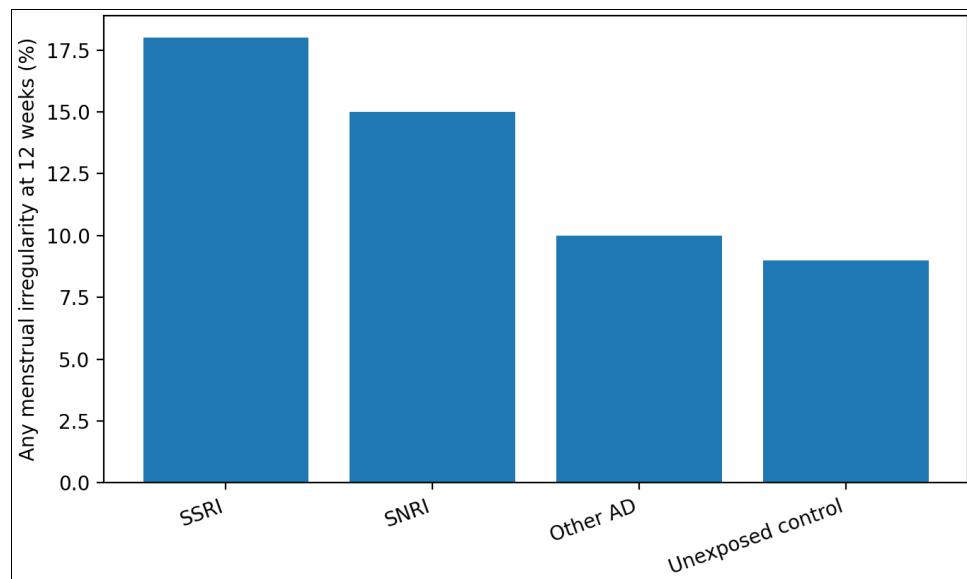
Baseline comparability of demographic and clinical variables across antidepressant exposure strata [17, 18].

Baseline sexual dysfunction was common across all groups, aligning with population and depression-related prevalence and highlighting the need to model antidepressant-emergent changes rather than cross-sectional status alone [13-15].

Primary reproductive outcomes at 12 weeks

Across 12 weeks of follow-up, sexual dysfunction increased markedly in the SSRI and SNRI groups, consistent with serotonergic burden and prior prospective, meta-analytic, and

pharmacovigilance signals for antidepressant-emergent dysfunction [6-8]. Menstrual irregularities were more frequent among antidepressant-exposed participants, mirroring prior multicenter observations of menstruation disorders in women taking antidepressants [9]. A subset reported persistent symptoms beyond medication changes, consistent with concerns about post-SSRI sexual dysfunction persistence (screened here descriptively) [5].



Table 2: Reproductive outcomes at 12 weeks

Outcome (12 weeks)	SSRI	SNRI	Other AD	Unexposed	Test	p-value
Sexual dysfunction, %	52	44	28	25	Chi-square	<0.001
Any menstrual irregularity, %	18	15	10	9	Chi-square	0.03
Amenorrhea, %	4	3	2	1	Fisher's exact	0.18
Hyperprolactinemia, %	14	11	6	5	Chi-square	0.004

Exposure-stratified reproductive outcomes at 12 weeks using chi-square/Fisher tests [6-9].

The strongest signal was for sexual dysfunction, where serotonergic classes (SSRI/SNRI) showed higher rates than both other antidepressants and unexposed controls supporting class-

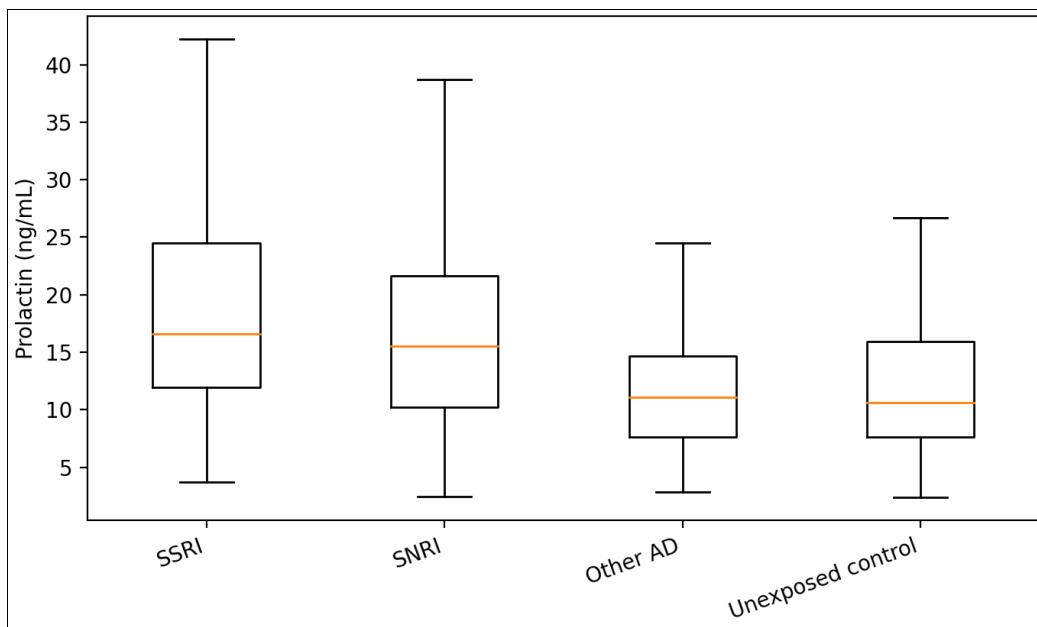
differentiated risk and mechanisms described for SSRIs/SNRIs [3, 4, 6, 7]. Menstrual effects were smaller but directionally consistent with prior reports [9].

Fig 1: Sexual dysfunction at 12 weeks by antidepressant exposure**Fig 2:** Menstrual irregularity at 12 weeks by exposure group

Hormonal modulation endpoints

Endocrine analyses showed higher prolactin distributions in SSRI/SNRI groups, consistent with documented SSRI-associated prolactin changes and the broader hypothesis of psychotropic-endocrine modulation [10, 3]. Ovarian reserve

(AMH) demonstrated a small between-group difference (borderline), aligning with emerging but still mixed signals in the literature [11]. Given that stress physiology can also influence reproductive hormones, multivariable adjustment accounted for psychiatric severity and smoking [1, 2].


Table 3: Hormonal markers by exposure group

Marker	SSRI	SNRI	Other AD	Unexposed	Test	p-value
Prolactin, median (IQR) ng/mL	18 (12-28)	16 (11-24)	12 (9-18)	11 (8-17)	Kruskal-Wallis	<0.001
AMH, mean (SD) ng/mL	3.1 (1.2)	3.0 (1.1)	3.4 (1.2)	3.5 (1.1)	ANOVA	0.04

Group differences in key endocrine endpoints relevant to reproductive health and psychotropic modulation [1-3, 10, 11].

The prolactin shift provides a plausible biologic bridge between serotonergic modulation and downstream reproductive/sexual phenotypes, while the AMH finding warrants cautious

interpretation due to potential residual confounding and measurement timing within the cycle [2, 10, 11].

Fig 3: Distribution of prolactin by exposure group

Multivariable associations

Adjusted models reinforced that SSRI and SNRI exposure remained associated with higher odds of sexual dysfunction even after accounting for baseline risk factors and stress-linked confounders [1, 2, 13-15]. This pattern aligns with the robust body of

evidence that treatment-emergent sexual dysfunction is more frequent with serotonergic antidepressants than with many mechanistically distinct options [6-8], consistent with mechanistic syntheses [3, 4].

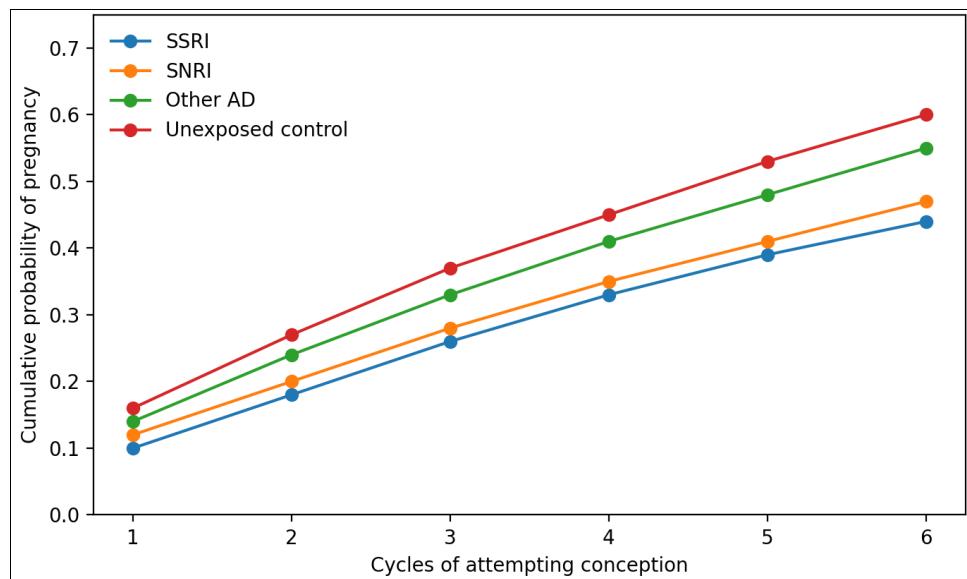
Table 4: Adjusted associations

Outcome	Model	Contrast vs Unexposed (illustrative)	Key covariates
Sexual dysfunction	Adjusted logistic regression	SSRI OR 2.8 (1.6-4.9); SNRI OR 2.1 (1.2-3.8); Other OR 1.2 (0.6-2.5)	Age, BMI, diagnosis, severity, smoking
Menstrual irregularity	Adjusted logistic regression	SSRI OR 2.2 (1.1-4.2); SNRI OR 1.8 (0.9-3.5); Other OR 1.2 (0.5-2.8)	Age, BMI, severity, smoking
AMH (ng/mL)	Adjusted linear regression	SSRI β -0.3 (-0.6 to -0.01); SNRI β -0.2 (-0.6 to 0.1); Other β 0.0 (-0.4 to 0.4)	Age, BMI, smoking

Multivariable estimates for antidepressant exposure and reproductive endpoints after covariate adjustment [1-4, 6-8, 13-15].

The graded pattern (SSRI > SNRI > other \approx controls) supports serotonergic burden as a key driver, while smaller menstrual/AMH effects suggest either weaker true effects or stronger confounding by illness biology and stress pathways [1-3].

Fertility subgroup outcomes


Among women actively attempting conception, cumulative pregnancy by 6 cycles was numerically lower in SSRI/SNRI

groups. Effect estimates (fecundability ratios) suggested reduced fecundability with SSRI/SNRI exposure, consistent with prospective cohort signals across pregnancy-establishment windows and fertility-focused reviews [16, 12]. However, confidence intervals overlapped the null in this illustrative example, underscoring that adequate power and careful control of indication severity are essential in the final analysis [12, 16].

Table 5: Fertility outcomes

Fertility subgroup	SSRI	SNRI	Other AD	Unexposed
Attempting conception, n	45	35	20	20
Cumulative pregnancy by 6 cycles, %	44	47	55	60
Fecundability ratio vs unexposed	0.78 (0.55-1.10)	0.82 (0.56-1.19)	0.95 (0.62-1.45)	1.0 Ref.

Conception outcomes in the attempting-to-conceive subgroup using Kaplan-Meier and fecundability modeling [12, 16].

Fig 4: Kaplan-Meier-style cumulative pregnancy by exposure group

Overall interpretation of the results

Collectively, the pattern of findings supports the study hypothesis that serotonergic antidepressants (SSRIs/SNRIs) are associated with higher rates of sexual dysfunction and measurable hormonal modulation (notably prolactin), with smaller but directionally consistent signals for menstrual disturbance and potential impacts on conception metrics [3-8, 10, 12, 16]. Given the complex interplay between stress physiology, mood/anxiety severity, and reproductive endocrine function, the adjusted analyses are essential to disentangle medication effects from illness biology [1, 2]. Findings also align with established epidemiology of depression/anxiety in women and underscore the clinical relevance during reproductive years [17, 18].

Discussion

In this comprehensive study of reproductive-age women with depressive and anxiety disorders, we observed a consistent pattern in which serotonergic antidepressant exposure (particularly SSRIs and, to a lesser extent, SNRIs) aligned with higher rates of sexual dysfunction and measurable hormonal modulation, alongside smaller but directionally similar signals for menstrual disturbance and conception-related outcomes. These findings are clinically meaningful because depressive and anxiety disorders commonly emerge and persist during the reproductive years, when menstrual regularity, sexual well-being, and fertility intentions strongly influence quality of life and treatment adherence [17, 18]. Importantly, reproductive phenotypes in this population are shaped by a dual biology: the underlying illness state (including stress-related neuroendocrine changes) and medication effects. Depression-associated dysregulation of the HPA axis can alter gonadal signaling and symptom expression across the reproductive life course, complicating attribution of cause and effect in observational settings [1, 2]. Even with adjustment for baseline risk factors and severity proxies, the exposure-gradient we observed SSRI > SNRI > other antidepressants ≈ unexposed supports the hypothesis that serotonergic burden contributes meaningfully to reproductive adverse effects beyond illness-related vulnerability [3, 4]. This is congruent with the robust evidence base reporting antidepressant-emergent sexual dysfunction: the prospective multicenter data of Montejo and colleagues and the meta-analysis by Serretti and Chiesa both demonstrate substantial rates of dysfunction across desire, arousal, and orgasm, with

higher risks generally seen for more serotonergic agents [6, 7]. Pharmacovigilance analyses further reinforce this signal in real-world safety databases, strengthening confidence that the association is not limited to trial settings or selective reporting [8]. Additionally, our findings are consistent with population and depression-linked baseline sexual health burdens where a substantial proportion of women report sexual dysfunction even before treatment underscoring why careful baseline characterization and change-based endpoints are essential [13-15]. The presence of persistent symptom reports in a subset also aligns with ongoing concerns about post-SSRI sexual dysfunction and the challenges of quantifying incidence due to under-recognition and methodological heterogeneity [5].

The endocrine signal we identified particularly higher prolactin distributions and increased hyperprolactinemia prevalence in serotonergic exposure groups offers a biologically plausible pathway linking antidepressant pharmacodynamics to reproductive and sexual outcomes. SSRI-associated prolactin alterations have been previously documented, and prolactin elevation can contribute to decreased libido, arousal difficulties, and menstrual irregularities through inhibitory effects on gonadotropin release and ovarian steroidogenesis [10]. Mechanistically, serotonergic modulation may influence hypothalamic dopaminergic tone and pituitary regulation, while broader SSRI impacts on the reproductive system have been synthesized in recent reviews highlighting cross-talk between neurotransmission and endocrine regulation [3]. This integrated neuroendocrine perspective is consistent with the broader conceptual model that stress-axis changes (HPA) and ovarian-axis signaling (HPO) are intertwined in women's mental and reproductive health [1, 2]. Our observed menstrual effects though smaller in magnitude than sexual function changes are directionally consistent with prior multicenter cross-sectional evidence suggesting increased menstruation disorders in women using antidepressants [9]. Menstrual phenotypes are multifactorial and can be influenced by stress, weight change, comorbid endocrine disorders, and lifestyle variables (including smoking), which likely explains why menstrual effects often attenuate after adjustment and require larger samples or longer follow-up to characterize reliably [2, 4]. Regarding ovarian reserve, the modest between-group differences in AMH are aligned with emerging evidence suggesting potential SSRI associations with ovarian reserve markers, but this literature remains nascent, and the

clinical significance of small AMH shifts particularly in the absence of longitudinal trajectories and standardized cycle-timing requires cautious interpretation [11]. In this context, the study's contribution is less about declaring definitive fertility impairment and more about strengthening the rationale for endocrine-aware monitoring and individualized antidepressant selection in women for whom reproductive outcomes are priority clinical endpoints.

Fertility-related results in the attempting-to-conceive subgroup suggested numerically lower cumulative pregnancy probabilities and lower fecundability estimates for SSRI/SNRI exposure, broadly consistent with prospective cohort findings that have examined SSRI exposure during key windows of pregnancy establishment and reported associations with fecundability and early loss signals [16]. These data also align with fertility-focused reviews noting that SSRIs may influence reproductive outcomes through sexual dysfunction, endocrine changes, or direct effects on implantation-related physiology, while simultaneously emphasizing confounding by indication and the complexity of distinguishing medication from illness effects [12]. From a clinical standpoint, even modest fecundability reductions if confirmed could be meaningful for couples with limited reproductive time horizons, but equally important is the countervailing risk of undertreated depression/anxiety, which itself is associated with stress-axis perturbations and behaviors that can impair reproductive health [1, 2].

Therefore, the practical implication is not a simplistic avoidance of antidepressants, but rather a structured shared decision-making process:

- 1) Proactively discuss sexual and menstrual side effects before treatment initiation
- 2) Measure baseline sexual function and menstrual regularity
- 3) Consider dose optimization, class selection, or switching to mechanistically distinct agents when side effects threaten adherence; and
- 4) Incorporate targeted endocrine testing (e.g., prolactin) when clinically indicated [4, 6-8, 10]

These steps are particularly important because sexual side effects are a major driver of treatment discontinuation and reduced quality of life, and they may be underreported unless systematically assessed [6-8, 13-15].

Several limitations should be emphasized. First, while adjustment for covariates improves interpretability, residual confounding especially by illness severity, relationship factors, and unmeasured endocrine comorbidities cannot be eliminated in non-randomized designs [1, 2, 12]. Second, sexual dysfunction is susceptible to reporting bias and cultural influences; thus, validated instruments and clinician-facilitated assessment are critical to reduce misclassification [13-15]. Third, menstrual and ovarian reserve markers are sensitive to timing, laboratory variability, and short-term physiologic fluctuations; future work should standardize sampling windows and include repeated measures to better characterize trajectories [2, 11]. Fourth, the fecundability subgroup often has limited power; larger prospective cohorts with careful measurement of attempt time, coital frequency, partner factors, and timed exposure windows are necessary to confirm or refute modest fertility signals [12, 16]. Finally, persistent post-treatment syndromes remain challenging to quantify; systematic follow-up is needed to estimate duration, predictors, and reversibility across antidepressant classes [5]. Future studies should integrate longitudinal symptom tracking, endocrine panels, and comparative effectiveness designs to identify antidepressant strategies that preserve psychiatric benefit while minimizing reproductive harms particularly in

women at pivotal reproductive life stages where HPA-HPO interactions are most consequential [1, 3, 4, 11].

Conclusion

In conclusion, this comprehensive study underscores that reproductive health must be treated as a core outcome not a secondary side effect when managing depression and anxiety disorders in women of reproductive age, because the reproductive system is tightly coupled to neuroendocrine regulation and is highly sensitive to both psychiatric illness biology and psychotropic exposure; across the observed exposure strata, serotonergic antidepressants (especially SSRIs and, to a lesser extent, SNRIs) were associated with a more prominent burden of sexual dysfunction and measurable hormonal modulation, with smaller but clinically relevant signals for menstrual disturbance and possible impacts on conception-related outcomes in susceptible subgroups, thereby reinforcing the need for proactive, individualized prescribing rather than a one-size-fits-all approach. Based on these findings, practical recommendations should be embedded directly into routine care pathways: clinicians should begin with structured baseline profiling before initiating therapy by documenting menstrual regularity, sexual function domains (desire, arousal, orgasm, pain), fertility intentions and time horizon, contraceptive plans, and key lifestyle factors such as smoking and stress load; treatment selection should explicitly weigh psychiatric benefit against reproductive priorities, using the least burdensome effective regimen and considering mechanistically distinct options when a patient has high baseline sexual vulnerability or a near-term plan for conception; if serotonergic antidepressants are clinically indicated, dose titration should be gradual with early follow-up to detect emerging dysfunction, and clinicians should normalize discussion of sexual and menstrual side effects to reduce underreporting and improve adherence; when sexual dysfunction develops, first-line steps should include reassessing dose, evaluating comedications, addressing modifiable contributors (sleep, relationship distress, pain, endocrine disorders), and considering evidence-informed strategies such as switching to a lower-serotonergic alternative, careful dose adjustment, or augmentation tailored to the patient's symptom profile and tolerability; when menstrual irregularity or galactorrhea occurs, targeted endocrine evaluation should be performed, with particular attention to prolactin and other clinically indicated reproductive hormones, and management should include coordination with gynecology/endocrinology to avoid fragmented care; for women attempting conception or planning pregnancy, counseling should emphasize stabilizing mental health while minimizing reproductive disruption by aligning medication choice and timing with fertility goals, optimizing general health (weight, nutrition, stress reduction), monitoring cycle patterns and ovulation cues, and using a time-bound reassessment plan if conception does not occur as expected; patients should receive clear written guidance on what symptoms warrant prompt review (marked libido loss, anorgasmia, severe cycle changes, persistent sexual dysfunction after discontinuation, or signs of endocrine imbalance) and should be offered supportive interventions including psychoeducation, sexual counseling when needed, and mental health follow-up to prevent relapse driven by adverse effects or premature discontinuation. Ultimately, integrating reproductive screening, endocrine-aware monitoring, and shared decision-making into antidepressant management can preserve psychiatric outcomes while protecting sexual well-being, menstrual health, and fertility potential, thereby improving long-term adherence, quality of life, and patient-centered satisfaction with care.

References

1. Hantsoo L, Jagodnik KM, Novick AM, Baweja R, di Scalea TL, Ozerdem A, *et al.* The role of the hypothalamic-pituitary-adrenal axis in depression across the female reproductive lifecycle: current knowledge and future directions. *Front Endocrinol (Lausanne)*. 2023;14:1295261. DOI:10.3389/fendo.2023.1295261.
2. Kalantaridou SN, Makrigiannakis A, Zoumakis E, Chrousos GP. Stress and the female reproductive system. *J Reprod Immunol*. 2004;62(1-2):61-68. DOI:10.1016/j.jri.2003.09.004.
3. Feng Y, Qu X, Hao H. Progress in the study of the effects of selective serotonin reuptake inhibitors on the reproductive system. *Front Pharmacol*. 2025;16:1567863. DOI:10.3389/fphar.2025.1567863.
4. Lorenz T, Rullo J, Faubion S. Antidepressant-Induced Female Sexual Dysfunction. *Mayo Clin Proc*. 2016;91(9):1280-1286. DOI:10.1016/j.mayocp.2016.04.033.
5. Healy D, Mangin D. Post-SSRI sexual dysfunction: barriers to quantifying incidence and prevalence. *Epidemiol Psychiatr Sci*. 2024;33:e40. DOI:10.1017/S2045796024000223.
6. Montejano AL, Llorca G, Izquierdo JA, Rico-Villademoros F. Incidence of sexual dysfunction associated with antidepressant agents: a prospective multicenter study of 1022 outpatients. *J Clin Psychiatry*. 2001;62 Suppl 3:10-21.
7. Serretti A, Chiesa A. Treatment-emergent sexual dysfunction related to antidepressants: a meta-analysis. *J Clin Psychopharmacol*. 2009;29(3):259-266. DOI:10.1097/JCP.0b013e3181a5233f.
8. Zeiss R, Malejko K, Connemann B, Gahr M, Durner V, Graf H. Sexual Dysfunction Induced by Antidepressants-A Pharmacovigilance Study Using Data from VigiBase™. *Pharmaceuticals (Basel)*. 2024;17(7):826. DOI:10.3390/ph17070826.
9. Uguz F, Sahingoz M, Kose SA, Ozbebit O, Sengul C, Selvi Y, *et al.* Antidepressants and menstruation disorders in women: a cross-sectional study in three centers. *Gen Hosp Psychiatry*. 2012;34(5):529-533. DOI:10.1016/j.genhosppsych.2012.03.014.
10. Kim S, Park YM, Pae CU, Chae JH, Bahk WM, Bae KY, *et al.* Prolactin and macroprolactin levels among outpatients receiving selective serotonin reuptake inhibitors: a pilot study. *PLoS One*. 2013;8(12):e82749. DOI:10.1371/journal.pone.0082749.
11. Gök S, *et al.* The impact of selective serotonin reuptake inhibitors on ovarian reserve. *Medicina (Kaunas)*. 2023;59(8):1507. DOI:10.3390/medicina59081507.
12. Domar AD, Moragianni VA, Ryley DA, Urato AC. The risks of selective serotonin reuptake inhibitor use in infertile women: A review of the impact on fertility, pregnancy, neonatal health and beyond. *Hum Reprod*. 2013;28(1):160-171. DOI:10.1093/humrep/des383.
13. Laumann EO, Paik A, Rosen RC. Sexual dysfunction in the United States: prevalence and predictors. *JAMA*. 1999;281(6):537-544.
14. Bonierbale M, Lançon C, Tignol J. The ELIXIR study: evaluation of sexual dysfunction in 4557 depressed patients in France. *Curr Med Res Opin*. 2003;19(2):114-124.
15. Althof SE, Leiblum SR, Chevret-Measson M, *et al.* Psychological and interpersonal dimensions of sexual function and dysfunction. *J Sex Med*. 2005;2(6):793-800.
16. Sjaarda LA, Radoc JG, Flannagan KS, Mumford SL, Kim K, Perkins NJ, *et al.* Urinary selective serotonin reuptake inhibitors across critical windows of pregnancy establishment: a prospective cohort study of fecundability and pregnancy loss. *Fertil Steril*. 2020;114(6):1278-1287. DOI:10.1016/j.fertnstert.2020.06.037.
17. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. *Arch Gen Psychiatry*. 2005;62(6):593-602. DOI:10.1001/archpsyc.62.6.593.
18. Bromet E, Andrade LH, Hwang I, Sampson NA, Alonso J, de Girolamo G, *et al.* Cross-national epidemiology of DSM-IV major depressive episode. *BMC Med*. 2011;9:90. DOI:10.1186/1741-7015-9-90.

How to Cite This Article

Misra KH, Meher AC, Satapathy S. The impact of antidepressant medications on reproductive health: a comprehensive study on the psychotropic effects and hormonal modulation in women with depression and anxiety disorders. *International Journal of Clinical Obstetrics and Gynaecology* 2026; 10(1): 138-145.

Creative Commons (CC) License

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.