

International Journal of Clinical Obstetrics and Gynaecology

ISSN (P): 2522-6614
ISSN (E): 2522-6622
Indexing: Embase
Impact Factor (RJIF): 6.71
© Gynaecology Journal
www.gynaecologyjournal.com
2026; 10(1): 306-310
Received: 01-11-2025
Accepted: 04-12-2025

Dr. Umesh Maruti Jirange
Associate Professor, Department of
OBGY, MNR Medical College and
Hospital, Sangareddy, Telangana,
India

Dr. Yogiraj Vaijanatharao Chidre
Professor, Department of OBGY,
MNR Medical College and
Hospital, Sangareddy, Telangana,
India

Dr. Gundoju Shrilekha
Senior Resident, Department of
OBGY, MNR Medical College and
Hospital, Sangareddy, Telangana,
India

Study of combination of oxytocin and misoprostol for reducing postpartum blood loss: A randomized comparative study

Umesh Maruti Jirange, Yogiraj Vaijanatharao Chidre and Gundoju Shrilekha

DOI: <https://www.doi.org/10.33545/gynae.2026.v10.i1d.1890>

Abstract

Introduction: Postpartum hemorrhage (PPH) is a leading cause of maternal morbidity and mortality worldwide. Active management of the third stage of labor (AMSL) with oxytocin is standard practice, but limitations in storage and administration have prompted evaluation of misoprostol as an adjunct.

Aim: To assess the efficacy of combining intramuscular oxytocin with sublingual misoprostol in reducing postpartum blood loss and minimizing the need for additional uterotronics compared to oxytocin alone.

Methods: A prospective, randomized study was conducted on 100 women delivering vaginally at term. Group 1 (n = 50) received 10 units of intramuscular oxytocin, while Group 2 (n = 50) received oxytocin plus 600 µg sublingual misoprostol. Demographic variables, hemoglobin levels, blood loss, uterine tone, need for additional uterotronics, and postpartum complications were analyzed.

Results: Mean blood loss was significantly lower in Group 2 (338.3±108.2 ml) compared to Group 1 (426.7±124.6 ml, $p = 0.001$). The requirement for additional uterotronics was also reduced in Group 2 (18%) versus Group 1 (40%, $p = 0.0098$). No significant differences were observed in transfusion rates, PPH incidence, or postpartum complications such as shivering and pyrexia.

Conclusion: The addition of sublingual misoprostol to intramuscular oxytocin effectively reduces postpartum blood loss and the need for supplementary uterotronics without increasing adverse outcomes. Combination therapy offers a safe and practical strategy for PPH prevention, particularly in resource-limited settings.

Keywords: Postpartum hemorrhage, oxytocin, misoprostol

Introduction

Postpartum hemorrhage (PPH) is a major obstetric emergency and continues to be one of the leading causes of maternal morbidity and mortality worldwide, accounting for nearly one-quarter of maternal deaths annually ^[1, 2]. The burden is disproportionately higher in low-and middle-income countries, where limited access to timely interventions and blood transfusion services exacerbates outcomes ^[3]. Active management of the third stage of labor (AMSL) has been universally recommended to reduce the risk of PPH. Oxytocin, administered intramuscularly or intravenously, is the first-line uterotonic agent due to its rapid onset of action and proven efficacy ^[4, 5]. However, oxytocin requires cold-chain storage and parenteral administration, which may limit its availability and practicality in resource-constrained settings ^[6]. Misoprostol, a prostaglandin E1 analogue, offers several advantages: it is inexpensive, stable at room temperature, and can be administered via oral, sublingual, rectal, or vaginal routes ^[7, 8]. Studies have suggested that misoprostol, when used in combination with oxytocin, may enhance uterine contractility, reduce postpartum blood loss, and lower the need for additional uterotronics compared to oxytocin alone ^[9, 10]. Nevertheless, concerns remain regarding its side effects, particularly shivering and pyrexia, which warrant careful evaluation of its safety profile ^[11]. Given these considerations, the present study was undertaken to evaluate the efficacy of combining intramuscular oxytocin with sublingual misoprostol in the active management of the third stage of labor. The study specifically aimed to assess reductions in postpartum blood loss, changes in hemoglobin levels, uterine tone, requirement for additional uterotronics, and incidence of postpartum complications, thereby contributing to evidence-based strategies for optimizing maternal outcomes in obstetric practice.

Corresponding Author:

Dr. Umesh Maruti Jirange
Associate Professor, Department of
OBGY, MNR Medical College and
Hospital, Sangareddy, Telangana,
India

Aims and Objectives

Aim

To evaluate the efficacy of combining intramuscular oxytocin with sublingual misoprostol in the active management of the third stage of labor, specifically in reducing postpartum blood loss and minimizing the need for additional uterotronics, compared to oxytocin alone.

Objectives

1. To compare demographic and baseline clinical variables (age, parity, gestational age, BMI, and hemoglobin levels) between the two study groups to ensure comparability.
2. To assess the mean blood loss and changes in hemoglobin levels following delivery in women receiving oxytocin alone versus oxytocin with misoprostol.
3. To evaluate uterine tone and the requirement for additional uterotronics in both groups.
4. To determine the incidence of postpartum hemorrhage (PPH) and postpartum complications (shivering, pyrexia) associated with the use of misoprostol in combination with oxytocin.

Materials and Methods

Study Design

This was a prospective, randomized, comparative study conducted in the Department of Obstetrics and Gynecology between the study period of 01/01/2024 to 1/12/2025. Ethical clearance was obtained from the institutional review board prior to commencement. Written informed consent was obtained from all participants.

Study Population

A total of 100 women fulfilling the inclusion criteria were enrolled and randomized into two groups:

- **Group 1 (n = 50):** Received 10 units of intramuscular oxytocin immediately after delivery of the anterior shoulder.
- **Group 2 (n = 50):** Received 10 units of intramuscular oxytocin plus 600 µg of sublingual misoprostol.

Inclusion Criteria

- Singleton pregnancy
- Term gestation (37-40 weeks)
- Vaginal delivery
- Hemodynamically stable women

Exclusion Criteria

- Women with hypertensive disorders of pregnancy
- Known coagulopathies
- History of previous postpartum hemorrhage
- Multiple gestations
- Cesarean deliveries

Randomization

Participants were allocated into two groups using a computer-generated random sequence. Allocation concealment was maintained through sealed opaque envelopes.

Data Collection

Baseline demographic and clinical variables (age, parity, gestational age, BMI, hemoglobin levels) were recorded. Blood loss was measured using calibrated collection drapes and weighing of soaked pads. Hemoglobin levels were assessed pre-delivery and 24 hours post-delivery. Uterine tone, need for additional uterotronics, and postpartum complications (PPH, shivering, pyrexia) were documented.

Operational Definitions

- **Postpartum hemorrhage (PPH):** Defined as blood loss ≥ 500 ml within 24 hours after vaginal delivery, in accordance with WHO criteria¹².
- **Uterine atony:** Failure of the uterus to contract adequately after delivery, identified clinically by a soft, boggy uterus on palpation¹³.
- **Additional uterotronics:** Requirement of any uterotonic agent beyond the standard regimen (oxytocin±misoprostol), such as ergometrine or carboprost¹⁴.
- **Postpartum pyrexia:** Temperature ≥ 38 °C occurring within 24 hours postpartum, excluding other infectious causes¹⁵.

Statistical Analysis

Data were analyzed using SPSS software version 22.0. Continuous variables were expressed as mean±standard deviation and compared using Student's t-test. Categorical variables were analyzed using Chi-square test or Fisher's exact test as appropriate. A p-value <0.05 was considered statistically significant.

Observation and Result

Table 1: Demographic Variables

Sr. No	Variable	Group 1 (n = 50)	Group 2 (n = 50)	Total (n = 100)	χ^2	p-value
1	Age (years)					
	a. 20-25	28 (56%)	14 (28%)	42 (42%)	6.67	0.0098
	b. 26-30	22 (44%)	36 (72%)	58 (58%)		
2	Parity					
	a. 1	18 (36%)	16 (32%)	34 (34%)	0.23	0.8890
	b. 2	25 (50%)	27 (54%)	52 (52%)		
	c. 3	7 (14%)	7 (14%)	14 (14%)		
3	Gestational age					
	a. 37 weeks	5 (10%)	4 (8%)	9 (9%)	6.72	0.0810
	b. 38 weeks	7 (14%)	16 (32%)	23 (23%)		
	c. 39 weeks	30 (60%)	25 (50%)	55 (55%)		
	d. 40 weeks	8 (16%)	5 (10%)	13 (13%)		
4	BMI (kg/m ²)					
	a. 18.5-24.9	20 (40%)	24 (48%)	44 (44%)	1.13	0.5680
	b. 25-29.9	19 (38%)	15 (30%)	34 (34%)		
	c. 30-34.9	11 (22%)	11 (22%)	22 (22%)		

The age distribution between the two groups showed a statistically significant difference. In Group 1, the majority of women were younger (56% aged 20-25 years), whereas in Group 2, most were slightly older (72% aged 26-30 years). This difference was significant ($\chi^2 = 6.67$, $p = 0.0098$), suggesting that age was not evenly matched across groups. Parity and gestational age, however, did not differ significantly between the

groups. Both groups had similar proportions of primiparous and multiparous women ($p = 0.8890$), and gestational age distribution was comparable ($p = 0.0810$). Likewise, BMI categories were balanced between the groups ($p = 0.5680$). These findings indicate that apart from age, baseline demographic characteristics were largely similar.

Table 2: Hemoglobin and Blood Loss

Sr. No	Variable	Group 1 (n = 50)	Group 2 (n = 50)	Total (n = 100)	χ^2	p-value
1	Pre-delivery Hb (gm%)					
	a. 8 to 9	1 (2%)	2 (4%)	3 (3%)		
	b. 9.1 to 10	14 (28%)	4 (8%)	18 (18%)		
	c. 10.1 to 11	23 (46%)	31 (62%)	54 (54%)		
	d. 11.1 to 12	8 (16%)	10 (20%)	18 (18%)	11.21	0.0240
2	Post-delivery Hb (gm%)					
	a. 8 to 9	1 (2%)	2 (4%)	3 (3%)		
	b. 9.1 to 10	8 (16%)	4 (8%)	12 (12%)		
	c. 10.1 to 11	27 (54%)	31 (62%)	58 (58%)		
	d. 11.1 to 12	9 (18%)	10 (20%)	19 (19%)	6.87	0.1430
3	blood loss (Mean \pm SD)	426.7 \pm 124.6	338.3 \pm 108.2	-	t-statistic = 3.42	0.0010
4	No. of blood units transfused					
	a. 0	31 (62%)	37 (74%)	68 (68%)		
	b. 1	15 (30%)	11 (22%)	26 (26%)	1.54	0.4630
	c. 2	3 (6%)	2 (4%)	5 (5%)		

Pre-delivery hemoglobin levels differed significantly between the groups ($p = 0.0240$). Group 2 had a higher proportion of women with hemoglobin levels above 10 g/dl compared to Group 1, which may have influenced tolerance to blood loss. Post-delivery hemoglobin values, however, did not show a statistically significant difference ($p = 0.1430$), indicating that both groups experienced comparable declines after delivery.

Blood loss was markedly reduced in Group 2 (mean 338.3 \pm 108.2 ml) compared to Group 1 (426.7 \pm 124.6 ml), and this difference was highly significant ($t = 3.42$, $p = 0.0010$). Despite this, the need for blood transfusion was not significantly different between groups ($p = 0.4630$), suggesting that while misoprostol reduced average blood loss, it did not substantially alter transfusion requirements.

Table 3: Uterine Tone and Uterotonics

Sr. No	Variable	Group 1 (n = 50)	Group 2 (n = 50)	Total (n = 100)	χ^2	p-value
1	Uterine tone Atonic					
	a. Atonic	3 (6%)	2 (4%)	5 (5%)	0.21	0.6460
2	Well contracted	47 (94%)	48 (96%)	70 (70%)		
	Need for additional uterotonic					
2	a. No	30 (60%)	41 (82%)	71 (71%)	6.67	0.0098
	b. Yes	20 (40%)	9 (18%)	29 (29%)		

Uterine tone was well contracted in the majority of women in both groups, with no significant difference ($p = 0.6460$). However, the need for additional uterotonic was significantly lower in Group 2 (18%) compared to Group 1 (40%) ($\chi^2 = 6.67$,

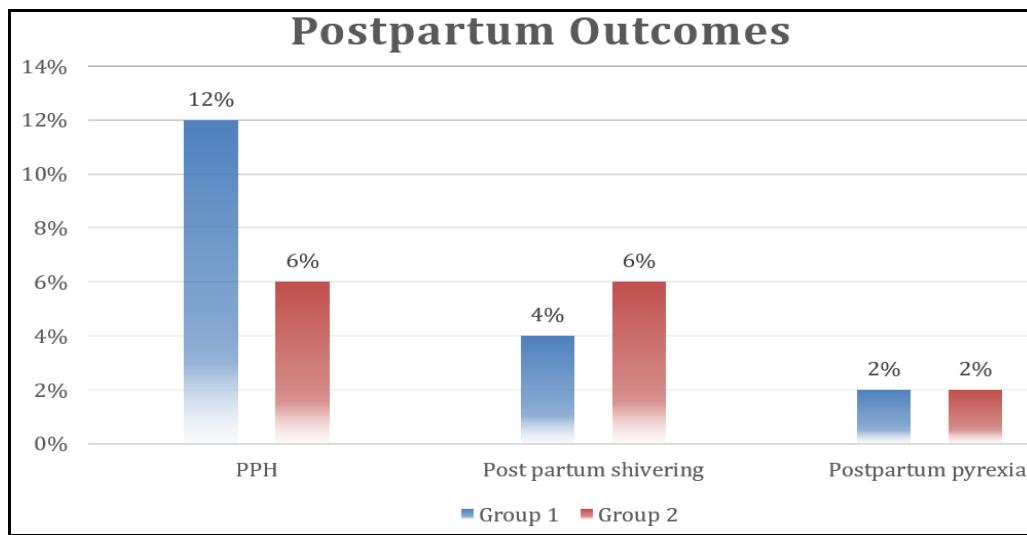

$p = 0.0098$). This highlights that the addition of misoprostol reduced the requirement for supplementary uterotonic agents, reinforcing its role in improving uterine contractility and minimizing atonic tendencies.

Table 4: Postpartum Outcomes

Sr. No	Variable	Group 1 (n = 50)	Group 2 (n = 50)	Total (n = 100)	χ^2	p-value
1	PPH					
	a. No	44 (88%)	47 (94%)	91 (91%)	1.07	0.3010
2	b. Yes	6 (12%)	3 (6%)	9 (9%)		
2	Post partum shivering					
	a. No	48 (96%)	47 (94%)	95 (95%)	0.21	0.6460
3	b. Yes	2 (4%)	3 (6%)	5 (5%)		
3	Postpartum pyrexia					
	a. No	49 (98%)	49 (98%)	98 (98%)	0.00	1.0000
	b. Yes	1 (2%)	1 (2%)	2 (2%)		

Postpartum hemorrhage (PPH) occurred less frequently in Group 2 (6%) compared to Group 1 (12%), though this difference was not statistically significant ($p = 0.3010$). Similarly, postpartum shivering and pyrexia were rare and comparable between

groups, with no significant differences ($p = 0.6460$ and $p = 1.0000$, respectively). These findings suggest that misoprostol did not increase adverse postpartum outcomes, and its safety profile was similar to oxytocin alone.

Graph 1: Postpartum Outcomes

Discussion

The present study evaluated the efficacy of combining intramuscular oxytocin with sublingual misoprostol in the active management of the third stage of labor. Our findings demonstrated that mean blood loss was significantly reduced in the combination group (338.3 ± 108.2 ml) compared to oxytocin alone (426.7 ± 124.6 ml, $p = 0.001$). Additionally, the requirement for additional uterotronics was lower in the oxytocin-misoprostol group (18%) versus oxytocin alone (40%, $p = 0.0098$). These results suggest that misoprostol enhances uterotonic efficacy when used alongside oxytocin. Similar reductions in blood loss have been reported in randomized trials. A study by Lokugamage *et al.* found that sublingual misoprostol combined with oxytocin significantly decreased postpartum blood loss compared to oxytocin alone [16]. Another multicenter trial conducted in Egypt demonstrated that misoprostol adjunct therapy reduced the incidence of PPH and lowered the need for additional uterotronics [17]. In contrast, some studies have shown no significant difference in transfusion requirements despite reduced blood loss, consistent with our observation that transfusion rates were comparable between groups [18]. Regarding uterine tone, our study found no significant difference between groups, but the reduced need for supplementary uterotronics in the misoprostol group aligns with findings by Villar *et al.*, who reported improved uterine contractility with combined therapy [19]. Postpartum complications such as shivering and pyrexia were rare and not significantly different between groups, corroborating the safety profile described in other trials [20].

The observed reduction in blood loss with misoprostol adjunct therapy may be explained by its pharmacological action. Misoprostol, a prostaglandin E1 analogue, binds to myometrial receptors and induces strong, sustained uterine contractions [21]. When combined with oxytocin, which acts via G-protein coupled receptors to increase intracellular calcium and stimulate rhythmic contractions [22], the dual mechanism provides both rapid onset (oxytocin) and prolonged contractility (misoprostol). This synergistic effect likely accounts for the reduced incidence of uterine atony and diminished blood loss. Furthermore, misoprostol's sublingual route ensures rapid absorption and high bioavailability, leading to effective uterine stimulation even in settings where parenteral administration may be delayed [23]. The absence of increased adverse events in our study supports the notion that misoprostol, when used judiciously, is a safe adjunct

to oxytocin in AMTS. Our findings reinforce the role of misoprostol as a valuable adjunct in resource-limited settings where oxytocin availability or cold-chain storage may be challenging. The combination therapy not only reduces blood loss but also minimizes the need for additional uterotronics, thereby simplifying postpartum management.

Conclusion

The addition of sublingual misoprostol to intramuscular oxytocin significantly reduced postpartum blood loss and lowered the need for additional uterotronics, without increasing adverse maternal outcomes. Although transfusion rates and PPH incidence were not statistically different, the overall reduction in blood loss highlights the benefit of combination therapy. Given its stability, ease of use, and favorable safety profile, misoprostol is a valuable adjunct to oxytocin, especially in resource-limited settings. Larger multicenter studies are recommended to confirm these findings and guide routine practice.

Conflict of Interest

Not available

Financial Support

Not available

References

1. Say L, Chou D, Gemmill A, Tunçalp Ö, Moller AB, Daniels J, *et al.* Global causes of maternal death: a WHO systematic analysis. *Lancet Glob Health.* 2014;2(6):e323-e333.
2. World Health Organization. WHO recommendations: uterotronics for the prevention of postpartum haemorrhage. Geneva: World Health Organization; 2018. p. 1-56.
3. Patel A, Goudar SS, Geller SE, Kodkany BS, Edlavitch SA, Wagh K, *et al.* Drape estimation vs visual assessment for estimating postpartum hemorrhage. *Int J Gynaecol Obstet.* 2006;93(3):220-224.
4. International Federation of Gynecology and Obstetrics (FIGO). Prevention and treatment of postpartum hemorrhage in low-resource settings. *Int J Gynaecol Obstet.* 2012;117(2):108-118.
5. Kaza S, Jirange UM, Ashok A, Mit N. Comparative study of oxytocin versus oxytocin with misoprostol in active management of third stage of labor. *J Med Sci Res.* 2020;8(3):145-150.

6. Widmer M, Piaggio G, Abdel-Aleem H, *et al.* Room temperature-stable carbetocin versus oxytocin for prevention of postpartum haemorrhage: a randomized non-inferiority trial. *Lancet.* 2018;392(10147):1345-1354.
7. Hofmeyr GJ, Qureshi Z. Misoprostol for the prevention and treatment of postpartum haemorrhage. *Best Pract Res Clin Obstet Gynaecol.* 2008;22(6):1025-1041.
8. Tang OS, Gemzell-Danielsson K, Ho PC. Misoprostol: pharmacokinetic profiles, effects on the uterus and side-effects. *Int J Gynaecol Obstet.* 2007;99(Suppl 2):S160-S167.
9. Elati A, Weeks A. The use of misoprostol in obstetrics and gynaecology. *BJOG.* 2006;113(9):1081-1089.
10. Geller SE, Adams MG, Kelly PJ, Kodkany BS, Derman RJ. Postpartum hemorrhage prevention in resource-poor settings: misoprostol versus oxytocin. *Int J Gynaecol Obstet.* 2006;94(2):134-139.
11. Taye B, Admasu A, Mekonen H, *et al.* Side effects of misoprostol in prevention of postpartum hemorrhage: a systematic review. *J Evid Based Med Healthc.* 2019;6(12):941-947.
12. World Health Organization. WHO recommendations for the prevention and treatment of postpartum haemorrhage. Geneva: World Health Organization; 2012. p. 1-48.
13. Cunningham FG, Leveno KJ, Bloom SL, Dashe JS, Hoffman BL, Casey BM, *et al.* *Williams Obstetrics.* 25th ed. New York: McGraw-Hill Education; 2018. p. 780-812.
14. Westhoff G, Cotter AM, Tolosa JE. Prophylactic oxytocin for the third stage of labour to prevent postpartum haemorrhage. *Cochrane Database Syst Rev.* 2013;(10):CD001808:1-48.
15. National Institute for Health and Care Excellence. Intrapartum care for healthy women and babies. NICE Clinical Guideline CG190. London: NICE; 2014. p. 1-394.
16. Lokugamage AU, Sullivan KR, Niculescu I, *et al.* Sublingual misoprostol versus oxytocin in the management of the third stage of labour. *Br J Obstet Gynaecol.* 2001;108(9):879-883.
17. El-Refaey H, O'Brien P, Morafa W, Walder J, Rodeck C. Misoprostol in the prevention of postpartum hemorrhage. *Br J Obstet Gynaecol.* 1997;104(3):336-339.
18. Walley RL, Wilson JB, Crane JM, Matthews K, Sawyer E, Hutchens D. A randomized controlled trial of misoprostol and oxytocin in the management of the third stage of labour. *BJOG.* 2000;107(9):1111-1115.
19. Villar J, Gulmezoglu AM, Hofmeyr GJ. Misoprostol in the management of the third stage of labour. *Lancet.* 1997;349(9059):1447-1448.
20. Ng PS, Chan AS, Sin WK, Tang LC, Cheung KB, Yuen PM. A randomized controlled trial of oral misoprostol and intramuscular oxytocin in the management of the third stage of labour. *Hum Reprod.* 2001;16(1):31-35.
21. Tang OS, Ho PC. Clinical applications of misoprostol in obstetrics and gynecology. *Int J Gynaecol Obstet.* 2007;99(Suppl 2):S160-S167.
22. Arrowsmith S, Wray S. Oxytocin: its mechanism of action and receptor signalling in the myometrium. *J Neuroendocrinol.* 2014;26(6):356-369.
23. Khan R, El-Refaey H. Pharmacokinetics and uterotonic effects of sublingual misoprostol in women. *Hum Reprod.* 2003;18(1):75-81.

References

1. Watson JJ, Wiss AD. Fractures of the proximal tibia and fibula. In: Bucholz RW, Heckman JD, editors. *Rockwood and Green's fractures in adults.* 5th ed. Philadelphia: Lippincott Williams and Wilkins. 2001, 1799-839.
2. Sobotta. *Atlas of human Anatomy.* In: Putz R, Pabst R editors. 21st ed. Philadelphia: Lippincott Williams and Wilkins, 2000, 263-347.
3. Whittle AP, Wood II GW. Fractures of lower extremity. In: Canale ST, editor. *Campbell's Operative Orthopaedics.* 10th ed. New York, Mosby, 2003, 2782-96.
4. Mills WJ, Nork SE. Open reduction and internal fixation of High energy tibial plateau fractures. *Orthop Clin North Am.* 2002; 33:177-94.
5. Palmer I. Compression fracture of lateral tibial condyle and their treatment. *J Bone Joint Surg Am.* 1939; 2:674.
6. Palmer I. Fracture of the upper end of tibia. *J Bone Joint Surg Br.* 1951; 33:160.
7. Hohl M, Luck JV. Fractures of the tibial condyles. *J. Bone Jt Surg.* 1956; 58-A:1001-1017.
8. Roberts JM. Fractures of the condyles of tibia, An anatomical and clinical end result study of 100cases. *J Bone Joint Surg Am.* 1968; 50:1505.
9. Porter BB. Crush fractures of lateral tibial table, factors influencing the prognosis. *J Bone Joint Surg Br.* 1970; 52:676.
10. Schatzkar J, Mc Broom R, Bruce D. The tibial plateau fractures-Toronto experience. *Clin Orthop.* 1979; 138:94.

How to Cite This Article

Jirange UM, Chidre YV, Shrulekha G. Study of combination of oxytocin and misoprostol for reducing postpartum blood loss: A randomized comparative study. *International Journal of Clinical Obstetrics and Gynaecology.* 2026;10(1):306-310.

Creative Commons (CC) License

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.