International Journal of Clinical Obstetrics and Gynaecology

ISSN (P): 2522-6614 ISSN (E): 2522-6622 © Gynaecology Journal www.gynaecologyjournal.com 2019; 3(5): 385-391 Received: 21-07-2019 Accepted: 25-08-2019

Dr. S Meenakshi

Assistant Professor, Tagore Medical College & Hospital, Chennai, Tamil Nadu, India

Dr. Hajistha Jakkiriya

Junior Resident, Tagore Medical College & Hospital, Chennai, Tamil Nadu, India

Corresponding Author: Dr. Hajistha Jakkiriya Junior Resident, Tagore Medical College & Hospital, Chennai, Tamil Nadu, India

Prevalence of calcium deficiency symptoms among adolescent girls in Tamil Nadu a cross sectional study

Dr. S Meenakshi and Dr. Hajistha Jakkiriya

DOI: https://doi.org/10.33545/gynae.2019.v3.i5f.380

Abstract

Background: Low calcium intake during adolescence may lead to decreased bone mass accrual thereby increasing the risk of osteoporosis. There is very little information about diet, nutritional status of adolescents in India. Therefore, there is a need to develop a database on the diet and nutritional status of the adolescents from different parts of the country to enable the governments and other non-governmental agencies to formulate policies and initiate strategies for the well-being of adolescent girls.

Aims: To study the Prevalence of calcium deficiency symptoms and confirmed by laboratory test for all participating adolescent girls.

Methodology: All Adolescent attending Tagore medical College for a period of one year from April 2018 to March 2019. Adolescents having chronic medical disorders excluded from the study. Consent form in regional language obtained from the participants.

Keywords: Prevalence, deficiency symptoms, adolescent girls, Tamil Nadu

Introduction

Adolescence is a period of rapid growth when an individual gains 35 per cent of adult weight and 11-18 per cent of adult height. These dramatic changes in physical growth and development over a period of time have to be met with special nutrition needs

The nutritional status of adolescent girls, the future mothers, contributes significantly to the nutritional status of the community. It is only recently that efforts, although small, have been made to include adolescent girls as beneficiaries in some of the health and nutrition intervention programmes.

Calcium is one among important minerals is the most important elements in the diet because it is a structural component of bones, teeth, and soft tissues and is essential in many of the body's metabolic processes.

Low calcium intake during adolescence may lead to decreased bone mass accrual thereby increasing the risk of osteoporosis. There is very little information about diet, nutritional status of adolescents in India. Therefore, there is a need to develop a database on the diet and nutritional status of the adolescents from different parts of the country to enable the governments and other non-governmental agencies to formulate policies and initiate strategies for the well-being of adolescent girls.

Novelty: The period of adolescence comprises nearly half of the growing period. Besides the obvious changes in Physical size and shape associated with adolescent growth and the onset of Puberty, there are social and physchological changes that are equally transformative in Magnitude. With the profound growth, comes increased demand for nutrients like proteins, energy, vitamins and minerals. So, there is a need to study and correct calcium deficiency symptoms of the adolescent girls at an early stage which is overlooked due to their lack of awareness. A scoring system may be modulated for evaluation of calcium deficiency.

Applicability: The demand for calcium is more during adolescent period and this defiency may be reflected in their pregnancy as pre-Eclampsia, dental pain, or low birth weight etc. An Indian study conducted by Dr. Iqbal Singh Ahuja, Gynecologist, Ludhiana, reveals that 20% of adolescent girls between the age group 14 to 17 were suffering from calcium deficiency. As there is very limited study and hence it is needed to conduct this study to study the prevalence of calcium deficiency symptoms of southern adolescent girls from both urban and rural Tamil Nadu.

Objectives

1. To study the Prevalence of calcium deficiency symptoms and confirmed by laboratory test for all participating adolescent girls.

Inclusion criteria

1. All the Adolescent girls.

Exclusion criteria

1. The Adolescent girls with any other medical disorders.

The information will be collected on a pre structured pre tested interview schedule in local language regarding:

1. Socio Economic status 2. Income. 3. Height 4. Weight 5. BMI 6. Type of activities. 7. Calcium products (Milk, Curd, Cheese, Processed milk) 8. Type of diet (veg / non-veg) 9. Fruits/ Vegetables. 10. Water intake. 11. Sun exposure.

All the relevant classification details enclosed in the proforma.

The 24 hour dietary recall and food frequency questionnaire will be carried out with the Adolescents to identify the calcium intake daily. The average Recommended Dietary Allowance for Calcium (Adolescent Girls) is 1300 mg (Milli grams).

Calcium Deficiency Signs & Symptoms

	Symptoms
1	Muscle cramps
2	Muscle aches
3	Muscle pain
4	Muscle twitching
5	Muscle spasms
6	Insomnia
7	Tooth decay
8	Weak bones
9	Premenstrual cramps
10	Giddiness

Statistical analysis: Categorical data will be tested for significance with the χ^2 and Fisher. Exact tests. Continuous data will be evaluated for normal distribution and testing for significance with the Student's *t*-test. Statistical significance will be defined as P < 0.05 at 095% Confidence Interval (CI). All respondents will be included in the analysis.

Results

Table 1: BMI Group * calcium deficiency

Crosstab							
		calcium d	Tatal				
			No	Yes	Total		
Bmi Group <25	-25	Count	69	3	72		
	<25	% within calcium deficiency	87.3%	27.3%	80.0%		
	>=25	Count	10	8	18		
		% within calcium deficiency	12.7%	72.7%	20.0%		
Total		Count	79	11	90		
		% within calcium deficiency	100.0%	100.0%	100.0%		

Chi-Square Tests

em square rests							
	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)		
Pearson Chi-Square	21.775 ^a	1	.000				
Continuity Correction ^b	18.183	1	.000				
Likelihood Ratio	17.167	1	.000				
Fisher's Exact Test				.000	.000		
Linear-by-Linear Association	21.533	1	.000				
N of Valid Cases	90						

From the above table, infer that out of calcium deficiency (Confirmed by laboratory test) adolescents 72.7% were BMI >= 25. Statistically significant.

Table 2: Milk * calcium deficiency

Crosstab								
			calcium d	T - 4 - 1				
			NO	YES	Total			
	Milk YES	Count	24	2	26			
Milk		% within calcium deficiency	30.4%	18.2%	28.9%			
		Count	55	9	64			
	NO	% within calcium deficiency	69.6%	81.8%	71.1%			
Та	tal	Count	79	11	90			
Total		% within calcium deficiency	100.0%	100.0%	100.0%			

Chi-Square Tests							
	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)		
Pearson Chi-Square	.699 ^a	1	.403				
Continuity Correction ^b	.232	1	.630				
Likelihood Ratio	.757	1	.384				
Fisher's Exact Test				.500	.328		
Linear-by-Linear Association	.692	1	.406				
N of Valid Cases	90						

From the above table, infer that out of calcium deficiency (confirmed by laboratory test) adolescents 81.8% were not consuming milk. Statistically significant.

Crosstab									
			calcium d	Tatal					
			NO	YES	Totai				
Curd Yes No	Count	54	6	60					
	res	% within calcium deficiency	68.4%	54.5%	66.7%				
	No	Count	25	5	30				
	INO	% within calcium deficiency	31.6%	45.5%	33.3%				
Total		Count	79	11	90				
		% within calcium deficiency	100.0%	100.0%	100.0%				

 Table 3: Curd * calcium deficiency

Chi-Square Tests						
	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1- sided)	
Pearson Chi-Square	.829ª	1	.363			
Continuity Correction ^b	.324	1	.569			
Likelihood Ratio	.796	1	.372			
Fisher's Exact Test				.496	.279	
Linear-by-Linear Association	.819	1	.365			
N of Valid Cases	90					

 N of Valid Cases
 90
 Image: Constraint of the state o

 Table 4: NV * calcium deficiency

Crosstab								
			calcium o	calcium deficiency				
			NO	YES	Total			
	YES -	Count	59	0	59			
NIV		% within calcium deficiency	74.7%	0.0%	65.6%			
INV	NO	Count	20	11	31			
	NO	% within calcium deficiency		25.3%	100.0%	34.4%		
Total		Count	79	11	90			
		% within calcium deficiency	100.0%	100.0%	100.0%			

Chi-Square Tests						
	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)	
Pearson Chi-Square	23.851ª	1	.000			
Continuity Correction ^b	20.658	1	.000			
Likelihood Ratio	26.515	1	.000			
Fisher's Exact Test				.000	.000	
Linear-by-Linear Association	23.586	1	.000			
N of Valid Cases	90					

From the above table, infer that out of calcium deficiency (confirmed by laboratory test) adolescents 100% were vegetarian...Statistically significant.

Table 5:	Egg *	calcium	deficiency
----------	-------	---------	------------

Crosstab								
			calcium d	Tatal				
			NO	YES	Total			
	VES	Count	76	0	76			
Egg	IES	% within calcium deficiency	96.2%	0.0%	84.4%			
	NO	Count	3	11	14			
	NO	NO % within calcium deficiency		100.0%	15.6%			
Total		Count	79	11	90			
		% within calcium deficiency	100.0%	100.0%	100.0%			

Chi-Square Tests							
	Value	Df	Asymptotic Significance (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)		
Pearson Chi-Square	68.029 ^a	1	.000				
Continuity Correction ^b	60.902	1	.000				
Likelihood Ratio	52.291	1	.000				
Fisher's Exact Test				.000	.000		
Linear-by-Linear Association	67.273	1	.000				
N of Valid Cases	90						

From the above table, infer that out of calcium deficiency (confirmed by laboratory test) adolescents 100% were not ating egg..Statistically significant.

Crosstab							
calcium deficiency							
			NO	YES	Total		
Fruits	VEC	Count	55	5	60		
	IES	% within calcium deficiency	69.6%	45.5%	66.7%		
	NO	Count	24	6	30		
		% within calcium deficiency	30.4%	54.5%	33.3%		
T-4-1		Count	79	11	90		
10	lai	% within calcium deficiency	100.0%	100.0%	100.0%		

Chi-Square Tests								
Value Df Asymptotic Significance (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)								
Pearson Chi-Square	2.537 ^a	1	.111					
Continuity Correction ^b	1.566	1	.211					
Likelihood Ratio	2.395	1	.122					
Fisher's Exact Test				.170	.107			
Linear-by-Linear Association	2.509	1	.113					
N of Valid Cases	90							

From the above table, infer that out of calcium deficiency (confirmed by laboratory test) adolescents 54.5% were not taking fruits. Statistically significant.

Table 7: Dates	* calcium	deficiency
----------------	-----------	------------

Crosstab							
			calcium c	T-4-1			
			NO	YES	Total		
Dates Y	Vac	Count	15	0	15		
	res	% within calcium deficiency	19.0%	0.0%	16.7%		
	No	Count	64	11	75		
		% within calcium deficiency	81.0%	100.0%	83.3%		
T-4-1		Count	79	11	90		
101	ai	% within calcium deficiency	100.0%	100.0%	100.0%		

Chi-Square Tests							
	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)		
Pearson Chi-Square	2.506 ^a	1	.113				
Continuity Correction ^b	1.326	1	.250				
Likelihood Ratio	4.307	1	.038				
Fisher's Exact Test				.200	.118		
Linear-by-Linear Association	2.478	1	.115				
N of Valid Cases	90						

From the above table, infer that out of calcium deficiency (confirmed by laboratory test) adolescents 100% were not taking dates. Statistically significant.

Crosstab							
			calcium o	Tatal			
			NO	YES	Totai		
Junk	NO	Count	49	3	52		
	NO	% within calcium deficiency	62.0%	27.3%	57.8%		
	YES	Count	30	8	38		
		% within calcium deficiency	38.0%	72.7%	42.2%		
Total		Count	79	11	90		
		% within calcium deficiency	100.0%	100.0%	100.0%		

Chi-Square Tests								
ValuedfAsymptotic Significance (2-sided)Exact Sig. (2-sided)Exact Sig. (1-sided)								
Pearson Chi-Square	4.780 ^a	1	.029					
Continuity Correction ^b	3.462	1	.063					
Likelihood Ratio	4.786	1	.029					
Fisher's Exact Test				.048	.032			
Linear-by-Linear Association	4.727	1	.030					
N of Valid Cases	90							

From the above table, infer that out of calcium deficiency (confirmed by laboratory test) adolescents 72.7% were taking junk food. Statistically significant.

Table 9:	Sun_	expo	* cal	lcium	deficiency
----------	------	------	-------	-------	------------

Crosstab							
			calcium d	Total			
			NO	YES	Total		
	VEC	Count	74	0	74		
Cup avea	IES	% within calcium deficiency	93.7%	0.0%	82.2%		
Sun_expo	NO	Count	5	11	16		
		% within calcium deficiency	6.3%	100.0%	17.8%		
Total		Count	79	11	90		
		% within calcium deficiency	100.0%	100.0%	100.0%		

Chi-Square Tests								
	Value	df	Asymptotic Significance (2- sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)			
Pearson Chi-Square	57.959 ^a	1	.000					
Continuity Correction ^b	51.728	1	.000					
Likelihood Ratio	46.965	1	.000					
Fisher's Exact Test				.000	.000			
Linear-by-Linear Association	57.315	1	.000					
N of Valid Cases	90							

From the above table, infer that out of calcium deficiency (confirmed by laboratory test) adolescents 100. % were not exposed to sun. Statistically significant.

Table 10: Anemia * calcium deficiency

calcium deficiency					Total	
			NO		Total	
	NO	Count	49	0	49	
Anomio	NO	% within calcium deficiency	62.0%	0.0%	54.4%	
Anenna	VEC	Count	30	11	41	
	IES	% within calcium deficiency	38.0%	100.0%	45.6%	
Total		Count	79	11	90	
Tota	1	% within calcium deficiency	y 100.0% 100.0% 100		100.0%	

Chi-Square Tests					
	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	14.977 ^a	1	.000		
Continuity Correction ^b	12.580	1	.000		
Likelihood Ratio	19.152	1	.000		
Fisher's Exact Test				.000	.000
Linear-by-Linear Association	14.810	1	.000		
N of Valid Cases	90				

From the above table, infer that out of calcium deficiency (Confirmed by laboratory test) adolescents 100% were anemic. Statistically significant.

Table 11: Ph	ysical activ	vity * cal	lcium de	ficiency
--------------	--------------	------------	----------	----------

physical activity * calcium deficiency Crosstabulation						
		calcium deficiency		T-4-1		
		NO	YES	Total		
	VEC	Count	61	3	64	
	ILS	% within calcium deficiency	77.2%	27.3%	71.1%	
physical activity	NO	Count	18	8	26	
	NO	% within calcium deficiency	22.8%	72.7%	28.9%	
Total		Count	79	11	90	
		% within calcium deficiency	100.0%	100.0%	100.0%	

Chi-Square Tests					
	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	11.723 ^a	1	.001		
Continuity Correction ^b	9.418	1	.002		
Likelihood Ratio	10.524	1	.001		
Fisher's Exact Test				.002	.002
Linear-by-Linear Association	11.593	1	.001		
N of Valid Cases	90				

From the above table, infer that out of calcium deficiency (confirmed by laboratory test) adolescents 72.7% were not done any physical activities. Statistically significant.

Crosstab						
			calcium o	calcium deficiency		
			NO YES		Total	
	0.5	Count	61	0	61	
	0-3	% within calcium deficiency	77.2%	0.0%	67.8%	
	6.10	Count	18	4	22	
score_group	0-10	% within calcium deficiency	22.8%	36.4%	24.4%	
	11 0 alaa	Count	0	7	7	
	$11 \propto abbe$	% within calcium deficiency 0.0%		63.6%	7.8%	
Total		Count	79	11	90	
		% within calcium deficiency	100.0%	100.0%	100.0%	
			•		•	

Table 12: Score group	* calcium deficiency
-----------------------	----------------------

Chi-Square Tests					
Value df Asymptotic Significance (2-sided)					
Pearson Chi-Square	59.495 ^a	2	.000		
Likelihood Ratio	45.977	2	.000		
Linear-by-Linear Association	47.890	1	.000		
N of Valid Cases	90				

From the above table, infer that out of calcium deficiency (confirmed by laboratory test) adolescents 63.6% were above 10 calcium sympom score...Statistically significant.

Criterion: >9 Score.

Area Under the Curve							
Test Result Variable(s): Base_Score							
A #20	Std.	Asymptotic	Asymptotic 95%	Confidence Interval			
Alea	Error ^a	Sig. ^b	Lower Bound	Upper Bound			
.974	.016	.000	.942	1.000			

From the above table, infer that Using calcium deficiency symptoms score more than 9, then Area Under curve is 0.974, we can predict calcium deficiency (Confirmed by laboratory test) adolescents. Statistically significant.

Summary

- 1. Out of calcium deficiency (Confirmed by laboratory test) adolescents 72.7% were BMI >=25.Statistically significant.
- 2. Out of calcium deficiency (Confirmed by laboratory test) adolescents 81.8% were not consuming milk. Statistically significant.

- 3. Out of calcium deficiency (Confirmed by laboratory test) adolescents 45.5% were not consuming curd. Statistically not significant.
- 4. Out of calcium deficiency (Confirmed by laboratory test) adolescents 100% were vegetarian...Statistically significant.
- 5. Out of calcium deficiency (Confirmed by laboratory test) adolescents 100% were not ating egg. Statistically significant.
- 6. Out of calcium deficiency (Confirmed by laboratory test) adolescents 54.5% were not taking fruits. Statistically significant.
- 7. Out of calcium deficiency (Confirmed by laboratory test) adolescents 100% were not taking dates. Statistically significant.
- 8. Out of calcium deficiency (Confirmed by laboratory test) adolescents 72.7% were taking junk food. Statistically significant.
- 9. Out of calcium deficiency (Confirmed by laboratory test) adolescents 100. % were not exposed to sun. Statistically significant.
- 10. Out of calcium deficiency (Confirmed by laboratory test) adolescents 100% were anemic. Statistically significant.
- 11. Out of calcium deficiency (Confirmed by laboratory test) adolescents 72.7% were not done any physical activities. Statistically significant.
- 12. Out of calcium deficiency (Confirmed by laboratory test) adolescents 63.6% were above 10 calcium sympom score...Statistically significant.

Conclusion

Calcium is one among important minerals is the most important elements in the diet because it is a structural component of bones, teeth, and soft tissues and is essential in many of the body's metabolic processes.

Low calcium intake during adolescence may lead to decreased bone mass accrual thereby increasing the risk of osteoporosis. our study clearly indicate that most of the adolescents were not taking proper nutritional diets and physical activities. Therefore, there is a need to develop a database on the diet and nutritional status of the adolescents from different parts of the country to enable the governments and other non-governmental agencies to formulate policies and initiate strategies for the well-being of adolescent girls.

References

- A study on prevalence of calcium Dr Iqbal Singh Ahuja, a gynecologist at Iqbal Nursing Home-Times of India-January 16th 2010- Ludhiana.
- 2. Nutrition, health and developmental needs of adolescent girls-Santosh Jain Passi, Anita Malhotra- Features, Health-Government of India-Press Information Bureau.
- Low calcium intake and hypovitaminosis D in adolescent girls-A. Khadikar D. Das M. Sayyad-Arch Dis Child. Nov 2007; 92(11):1045. Doi: 10.1136/adc.2007.116376 PMCID: PMC2083623
- A Review of the Situation in Selected South-East Asian Countries-Adolescent Health Nutrition-WHO-Regional Office of Soth East Asia- New Delhi. SEA NUT 163 March 2006
- 5. Nutrient requirements and recommended dietary allowances for Indians-Expert. A report of the expert group of ICMR.